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1. Introduction 

In this thesis we propose to conduct a study on various methods that can be applied for 

successfully driving a car in a simulated environment in the presence of opponents.  

 

1.1. The Importance of Autonomous Cars 

Nowadays, the interest in developing autonomous vehicles increases day by day with the purpose 

of achieving high levels of safety, performance, sustainability, and enjoyment. Driverless cars 

are ideal to use in crowded areas, on highways, and because they ease the flow of the cars. The 

autonomous cars also reduce the opportunity of occurring accidents which are usually caused by 

an oncoming car or people who are crossing the street while the drivers don’t pay attention to 

their presence.  

 There are many research centers founded around the world for developing smart systems 

for driverless cars. These automotive research centers are supported by the leading automobile 

companies and universities such as the Center for Automotive Research at Stanford University 

(CARS) [13]. CARS has a network of  more than 80 affiliated industry partners like Ford Motor 

Company, General Motors, BMW of North America, Mercedes-Benz Research & Development 

North America, Allstate Roadside Services...etc. [13]. The CARS center brings together 

industrial interests and academia by attracting the researchers who have the passion to work on 

the automotive research which is supported by the affiliated industry partners.  

 As an attempt to simulate autonomous cars, the simulated car racing competitions have 

arisen recently. This category of computer games involves computational and artificial 

intelligence [7]. The importance of such competitions comes from the fact that they are a perfect 

environment for testing the application of autonomous driving techniques [7]. Thus, simulated 

car racing competitions offer a structure to “test learning, adaptability, evolution and reasoning 

features of algorithms under investigation” [6]. The simulation offers a realistic platform for car 

racing in real time.  

 In this proposal we present an adaptive racing car controller developed within TORCS 

(The Open Racing Car Simulator) [4]. The TORCS system visualizes racing cars with complex 

graphics based on physics principles. The program offers a server which implements the race 

combining multiple cars, and the setup for the user to develop a client is a module that can be 

written by the user [2] supplying the actions of an individual car. The client module that we 

developed for this thesis is called Gazelle. We submitted the Gazelle controller to the TORCS 

completion is organized by the Genetic and Evolutionary Computation Conference in 2013. 

 

1.2. The TORCS Simulator Environment 

The TORCS (The Open Racing Car Simulator) is a popular car racing simulator written in C++ 

[6]. TORCS is commonly used for academic purposes, because it is similar to the commercial 

car racing games, and it is considered to be a fully customized environment [6]. It has a powerful 

physics engine and a 3D graphics engine; together they enable visualizing the car racing 

uninterruptedly in real time [6]. It also provides the capability to develop and build new 

controllers for cars. The TORCS attracts a wide community of developers and users, and it is the 
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platform for popular competitions which are organized every year as a part of various 

international conferences [2].   

In this environment, each car is controlled by a controller. The controller can access the 

current state of the car in the race, consisting of information about the track, the car, and the 

opponents [7]. Based on this information the controller makes decisions to modify the following 

control units: 

• the steering wheel with values in the range [-1, +1] for a change in direction: -1 corresponds 

to −45 o while +1 to 45 o; 

• the gas pedal [0, +1] for accelerating; 0 corresponds to losing the speed;  

• the brake pedal [0, +1] for decelerating; 

• the gearbox with possible values in the set {-1,0,1,2,3,4,5,6} for choosing the gear.[2] 

The system works in a client-server model. The race application is a server, while each car 

controller is a client exchanging information with it. 

The remainder of the proposal is organized in the following way. In chapter 2 we cite a few 

previous papers, works, and other materials that are relevant to our controller. In chapter 3 we 

discuss the procedural methods and the learning methods that we have already used and will 

develop further to improve the driver algorithm that we started from. While chapter 4 discusses 

the experimentation methodology that we use to evaluate the controller’s performance. 
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2. Literature Review 

The work in this thesis is based on the EPIC controller as presented by Guse and Vrajitoru in [2]. 

This paper presents the EPIC controller, which is the previous version of the Gazelle code. EPIC 

was submitted to the GECCO 2009 competition [9]. In this competition, cars driven by code 

submitted by the competitors run against each other in a race. Beside the car status, the 

controllers are provided information about the angle with the track’s center line, the free distance 

ahead within 45 degrees of the car direction, and information about close opponents. The paper 

describes a car driver based on two components: determining the target angle for turning in each 

frame, and determining the target speed in the next frame. The controller calculates the target 

angle based on the target direction in an efficient way. It also provides a sharp turn detecting 

system which allows adjusting the target speed for an approaching sharp turn to keep the car 

inside the track. The system also adjusts the target angle if it determines that it might lead the car 

out of the track [2]. EPIC depends on the principle of calculating the free available distance 

ahead to determine the target angle. However, this controller lacks a component to handle 

opponents, and the movement along the track requires more fluency.  So, we started improving 

the EPIC code to achieve these desirable goals. 

Many approaches can be found in the literature for track prediction with the purpose of 

optimizing the performance. Such predictions help the controller to make early decisions on 

adjusting the steering angle and the target speed, in order to keep the car inside the track. Such an 

approach allows the controller to minimize the damage to the vehicle and to reduce the time 

required to complete the race. 

One popular approach of track prediction depends on calculating the distance ahead, such 

as the one used in the EPIC controller.  It calculates the free available distance ahead of the car to 

determine the target angle. Another approach is “the track segmentation”, in which the track is 

divided into pieces and these pieces are classified as pre-defined types of polygons. Then the 

controller reconstructs a full track model from these polygons, as presented in [8]. 

Another controller based on the track segmentation principle is presented by Onieva et al. 

[6].  Their controller was submitted to TORCS Car Racing Competition 2009 [9]. The 

architecture of the controller consists of five simple modules that control gear shifting, steer 

movements, and pedals positions [6]. In addition, the target speed is adjusted by the “TSK fuzzy 

system”. As the authors pointed out, “Fuzzy rule-based systems are considered one of the most 

important applications of the fuzzy set theory suggested by “Zadeh [10]”. When the car is inside 

the track, the target speed is calculated based on certain rules [6]. The most important aspect of 

this work is the opponent modifier. It controls the driving behavior in situations when an 

opponent is nearby by adjusting the steering controller and the braking controller immediately. 

However, this approach doesn’t take into consideration the factor of the opponent’s speed.  In 

general, this paper provides an important contribution for detecting the track mode and handling 

the opponents for autonomous cars.  

 Another paper [7], also written by Onieva et al. in 2012, presents a driving controller 

called AUTOPIA for the simulated car racing competition. It provides a full driving architecture 

including six separate main tasks: gear control, pedal control, steering control, stuck situation 

manager, target speed determination, opponent modifier, and learning module [7]. The 

performance of the controller was tested in two efficient ways: it was run over several tracks 
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with and without opponents. Several measures of performance were reported, such as 

participating in international competitions and running the car on several tracks once alone and 

another time with opponents. The controller was submitted as a participant to the 2010 Simulated 

Car Racing Competition, in which it won laurels in the end as the authors claimed [7]. The paper 

provides a simple and a powerful architecture especially for the opponent modifier.  It deals with 

opponents in all directions in a simple approach. When an opponent is present within 

unallowable distances, heuristic rule sets are applied for pedal control and steering control [7].  

Furthermore, many learning approaches are presented to find the optimal path the car 

should follow to reduce the time required to complete the race. Finding the optimal path could be 

accomplished by shortening the distance covered by the car and avoiding unnecessary turns.  

“The evolutionary learning approach” is presented in a paper by Kim, Na et al. [3]. It 

presents an optimized algorithm which was used for an autonomous car controller using “self‐
adaptive” evolutionary strategies (SAESs) [3]. Kim, Na et al. developed additional rules and 

parameters to enhance the performance of their previous model, and they applied new learning 

approaches to those rules and parameters [3]. This work is well-experimented and it provides 

learning approaches that are able to derive the parameters used to determine the target speed in 

an efficient and easy to generalize way. Yet, it lacks an opponent handling system.  

Another controller using the evolutionary learning system is presented by Quadflieg et al. 

in [8]. The controller is based on the track segmentation principle. It was submitted to TORCS 

Car Racing Competition 2010 [8]. This controller uses a simple evolutionary learning approach 

which enables planning the path ahead for the car [8]. 

Artificial neural networks (ANN) are also used as a learning system. In [5], a controller 

presented by Mun˜oz, et al. was submitted to the 2010 Simulated Car Racing Championship. It is 

“a human-like controller” using neural networks [5]. It adopts the principle of track 

segmentation.  The controller builds a model of the tracks using the neural networks to predict 

the trajectory the car should follow and the target speed [5]. “The neural networks are trained 

with data retrieved from a human player, and are evaluated in a new track” [5]. The AANs are 

trained to reach the optimal path the car should take to behave similarly to the human player. 

This work shows a satisfying result of predicting the trajectory in new tracks; however, the target 

speed is most likely slower than the human's in the same tracks because of the absence of an 

opponent overtaking component, as the authors mentioned [5]. 

A different controller suggested by Chaudhary and Sharma in [1] generates the optimal 

racing line using artificial neural networks. The controller choses the optimal racing line within a 

scope angle of 15 degrees that gives the maximum possible speed in every point on the path. 

Overall, most of the works succeed in building either a track prediction system or an 

opponent-handling system. It is challenging to deal with opponents while the car is traveling on a 

specific target angle and at a specific target speed. Sometimes, the presence of opponent requires 

adjusting the steering angle and modifying the speed, either accelerating or decelerating. Thus, 

most of the papers focus on improving track prediction systems regardless of the presence of the 

opponents. 

We will compare our model with both the Epic controller described earlier in this section, 

and with a Simple Driver controller provided by the TORCS engine as part of the client code. 

The Simple Driver is a very simple controller providing basic modules for steering control and 



7 

 

accelerating/brake control. It keeps the car in the middle of the track as much as possible, and it 

applies a simple recovery policy if the car is stuck. 
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3. Proposed Methods  
We will discuss more in details the procedural and learning methods that we use to improve the 

EPIC algorithm that we started from. In the procedural methods, we will describe the units that 

we add to enhance the performance of the Gazelle driver. As part of the discussion of the 

learning methods, we will describe some algorithms that we would like to use to improve the 

procedural driver automatically. 

 

3.1. Procedural methods 
The TORCS engine provides the following information to the controllers: a car status containing 

current speed, angle with the centerline of the road, distance from the center of the road, and 

more; an array of sensors detecting the distance to the road border in a 5 degree increment in a 

range of [-45, 45] degrees around the car's direction of movement; and array of opponent sensors 

with information about opponents present within a 200m radius of the car in all directions. 

The first goal of this thesis is to implement the Gazelle controller efficiently by 

improving the existing modules from the EPIC controller and by adding new components to deal 

with aspects not present in the EPIC driver. The EPIC driver is the starting module for the 

Gazelle driver. We will also add new modules to minimize the damage and deal with opponents.  

 

The Gazelle Controller 

The Gazelle controller consists of three components: the target direction unit, the target speed 

unit, and the opponent adjuster. The target direction unit controls the direction in which the car is 

moving. The target speed unit adjusts the speed based on the target direction, while the Opponent 

Adjuster adjusts the direction and speed based on the opponents’ presence. We will describe 

each unit in more details as follows.  

 

Target Direction Unit 

The unit determines the target angle using the following guidelines: 

• If the current direction of the car is close enough to the road centerline, there is enough 

distance straight ahead, and the car is safely inside the track, then the car can continues in 

the same direction.  

• Otherwise, we start with the direction of the road centerline, and scan by 10 degrees in the 

direction in which the distance ahead increases, until we find an angle at which it decreases, 

or we reach the maximal turn angle of 45o.   

Figure 1 (source: [2]) shows this scanning process of searching for a good path of movement. 
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Figure 1: The scanning process [2] 

 

• If the car is too close to the border of the road or gets outside, we add a direction change 

to move it back inside.   

• If the current turning angle is good enough, we maintain it for movement continuity. This 

is an addition to the Gazelle controller to improve the fluency of the car’s movement. 

  

As Figure 2 shows, after the target angle is computed, we identify three types of situations on the 

road: 

• Straight: if the road is straight ahead of the car and the target angle is between 0o and 10o. 

• Fast Curve: if the upcoming curve is small enough and its angle is between 10o and 15o.  

• Medium Curve: if the angle of the upcoming curve is between 15o and 30o. 

• Slow Curve: if the upcoming curve is wide and the target angle is greater than 30o. 

 

 

 
Figure 2: The curve types. 

 

We differentiate between the curves in order to adjust the target speed in the next module. 

Thus, the straight and fast curves allow the controller to drive at the maximum speed, while the 

slow curves require adopting the minimum safe speed to keep the car inside the track.  

 

Target Speed Unit 

The target speed is computed once we know the target angle. The unit determines the speed 

using the following guidelines: 

 

       Straight             Fast Curve         Medium Curve  Slow Curve 
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• If we are going almost straight or on a fast curve, the distance ahead is large enough, and 

no sharp turn is coming ahead, we aim for a modularity high speed called “Sunday 

Driver”. 

• Otherwise the target speed is first scaled with the cosine of the target angle for the change 

in direction and with the available distance in the aimed direction. 

• The resulting target speed is scaled afterwards by a factor depending on the sharpest turn 

in the road detected ahead, 20 degrees left and right of the aimed direction. The purpose 

of this is to anticipate situations where the speed needs to be reduced. 

 

Opponent Adjuster Unit 

We put more efforts into building a component for dealing with opponents because the car’s 

performance can be optimized by handling the opponents properly. As we mentioned above, 

most of the controllers we discussed before don’t handle the opponents well or at all. Neither the 

Simple Driver, the controller provided as an example by the TORCS competition, nor the EPIC 

controller can deal with the opponents.  

In our opponent adjuster, if an opponent violates chosen tolerance values of closeness as 

determined by the opponent sensors in each direction, then the gas/brake control and steering 

control will be modified to avoid the collision the following way:  

• If there is an opponent at a distance of 200m or less, then a test will determine if it 

violates the safe distance (the tolerance values) in each of the available sensor directions.  

• If there is an opponent in the front of the car, on the sides, or in the rear of the car within 

an unallowable space, the following flags are turned on, causing a reaction of the 

respective modules: 

 

- A Brake flag for an opponent in the front. This flag takes care of the sensors in the range 

of -40o to 40o [6]. If an opponent is found within unallowable and its speed is close to 

ours, the car should brake immediately by modifying the brake/accelerate value to the 

half of the current speed. The tolerance values are shown in Table 1 and were adopted 

from [6]. 

 

Table 1: Opponents adjuster over the gas & brake action [6] 

Orientation of the Opponent Sensor Tolerance Value 

±40o 6    m 

±30o 6.5 m 

±20o 7    m 

±10o 7.5 m 

0 o 8    m 

 

- A Steering flag for an opponent in the front or on the side, it takes care of the 

opponent sensors in the range of -100o to 100o, also adopted from [6]. An overtaking 

manoeuver requires to modify the steering angle if the opponent violates the tolerance 

values. The tolerance values are shown in Table 2. 
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Table 2: Opponent sensors tolerances for overtaking [6]. 

Orientation of the Opponent Sensor Tolerance Value 

0o, ±10o 20 m 

±20o 18 m 

±30o 16 m 

±40o 14 m 

±50o 12 m 

> ±50o 10 m 

 

- An Accelerating flag for an opponent at the rear of the car driving at an equal or 

higher speed than ours. Increments values are summarized in Table 3.  

 

Table 3: Opponent sensors increments for overtaking [6]. 

Orientation of the Opponent Sensor Increment Value 

0o, ±10o ±0.20o 

±20o ±0.18o 

±30o ±0.16o 

±40o ±0.14o 

±50o ±0.12o 

> ±50o ±0.10o 

 

Trouble Spots Register 

This component was added in order to avoid the accidents caused by mistakes in predicting the 

right steering angle, leading the car out of the track. In TORCS competitions, the race starts with 

a warming level which allows drivers to learn the track, then the actual race takes place in the 

second level. Thus, we introduced the “Trouble Spots Register” detecting and storing places in 

the track where the car gets out of the road starting from the warming level. In the subsequent 

lapses of the circuit, to avoid repeating these mistakes, we use a method decelerating the speed 

whenever the car is close to a trouble spot, by an amount inversely proportional to the distance to 

the trouble spot. 

A list of "trouble spots" on the road will be stored by the Gazelle driver in a persistent 

memory space in order to be accessible at later points during the race. To achieve this, the last 

position of the car on the road is stored in each frame. Then when the code detects that the car 

got out of the road, this position is added to the list.  

In each frame, the current position of the car is compared to the trouble spots. If we are 

close enough to one of them, the speed will be adjusted as mentioned above. The closer we are to 

the trouble spot, the closer the speed will approach the safe one.  

The issue arises from the fact that visibility of the driver is limited to 200m ahead and 

that it’s difficult to break down the speed fast enough if the situation requires it. For this reason 

we adopted the approach of a sharp turn on a road combined with the troupe spots detector.  
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3.2. Learning Methods 

In this part of the research, we aim to optimize the performance of the procedural driver 

automatically using learning methods. As we mentioned before, our goal is to minimize the 

damage as much as possible, and to reach the maximum safe speed. These two goals can be 

achieved by reaching the ideal target angle and the ideal target speed. We need to enable the 

controller to learn during the racing time using learning algorithms. We will use two main 

algorithms for this purpose: Artificial Neural Networks and Hill-Climbing. 

An Artificial Neural Network (ANN) is a learning method that is inspired by the way the 

human’s biological nervous system processes information. Such a system is composed of a large 

number of connected neurons, the processing elements, in which components work together to 

solve a specific problem [14]. The ANN is a “layered structure” consisting of three main layers: 

the inputs layer, the hidden layer, the outputs layer [11]. The hidden layer uses the learning 

processing elements (neurons) to adjust the input values combined with a set of parameters in 

order to produce the optimal output solution.  

ANNs can learn by examples and they can be used for pattern recognition or data 

classification and they are also appropriate for prediction or forecasting [14]. There are many 

applications of ANNs such as modelling and diagnosing the cardiovascular system, sales 

forecasting, industrial process control, customer research, data validation, risk management, 

target marketing, and credit evaluation [14]. 

We can implement an ANN in the Gazelle for the Target Angle Unit using the car state to 

represent the input layer. As Figure 3 shows, a hidden layer will process this input combined 

with parameters that predict the damage and the maximum safest angle. Based on these 

parameters, the ANN will output the optimal target angle. Another ANN is desirable also to be 

used in Gazelle controller to take care of the Target Speed Unit, taking the output of the first 

ANN as an input, then processing the input in the hidden layer to produce the optimal target 

speed.  

 

Figure 3: Implementation plan for using neural networks in the Gazelle Controller. 

 

We will use another learning method: the Hill Climbing (HC) algorithm which creates 

the first candidate solution and then produces the offspring using “a parameterless search 

operation”. The search operation performs a loop in which the optimal solution at the current 

time is used to produce one child. If this new child is better than its parent, it replaces it. Then, 

the cycle starts all over again [12].The algorithm does not maintain a search tree: It looks for an 

appropriate path only from the current state and immediate future states. Hill climbing is widely 
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used in networking and communication, robotics, data mining and data analysis, and developing 

behaviors for game players [12]. 

The HC Algorithm can be efficient to use for predicting a good path that the car should 

take in order to optimize its performance. We will use HC in the Target Angle Unit and the 

Target Speed Unit to improve the car’s performance. 
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4. Experimentation Methodology  

We establish a set of tests to measure the performance of the Gazelle controller comparing it to 

previous work. We will compare the newly developed methods with two existing models: the 

Simple Driver provided by the TORCS software, and the Epic Driver that was developed before. 

We need to choose a number of tracks that we'll test them on, and determine what conditions 

we're going to run this in. 

For the tracks, there are three main categories: road tracks, dirt tracks, and oval tracks. 

There are 21 road tracks, 8 dirt tracks, and 9 oval tracks to choose from. We choose three of the 

road tracks, one dirt track, and one oval track. Of the oval tracks, E-Track 5 looks the most 

interesting. Of the dirt tracks, Dirt 4 looks like it has a good variety of curves. For the road track, 

we choose three of these tracks: Forza, Alpine 2, and E-road.  

 

 

Figure 4: The Alpine2 track on the right, and the car is travelling on the same track on the left. 

 

As Figure 4 shows, the Alpine 2 track is a road track; its shape has many curves of all 

kinds: fast, medium and slow curves. Such a road enables us to test the performance more 

efficiently. We can also notice the material of the road on the left, which looks like asphalt. 

TROCS interacts with the road’s material and the behavior of the cars on the road depends on it. 

It makes the tracks made of asphalt allows the car to travel more fluently than the dirt road. 

We set the number of lapses to five, five lapses would be good enough to have an 

accurate comparison. At the end of the five lapses, the program itself outputs some information, 

such as the total time and the damage. We will also add some other measures that would be 

good indicators of performance: the number of times the car gets out of the road, the total time 

spent outside the road, and the total distance covered by the end of the race. The more distance is 

covered in one lapse, the less efficient the driver is.  

Then we will run the three drivers, Simple, Epic, and Gazelle, on the five tracks and store 

these measures for all of them. We will take one track and discuss the results of the experiment 

as a sample of how these measures will be used in the thesis. We chose the E-Road from the road 

track category and the results are shown in Table 4.  
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Table 4: The total statistics of running the three controllers individually on E-Road in TORCS. 

 Description Simple Driver Epic Gazelle  

The number of times the car gets out of the road 0 0 33 

The total time spent outside the road 0 0 4099 

The total distance covered  by the car from the beginning of the race 16328.5 16328.5 12949.6 

The maximum distance covered by the car from the start line along the track line 3260.42 3260.42 3260.37 

The damage of the car 0 0 10149 

Total time 17:37:13 7:28:51 2:13:20 

Lapses 5 5 3 

 

We can have more precise statistics by calculating the average of each measure per lapse 

as shown in Table 5.  

Table 5: The average statistics for each lapse of running the three controllers individually on E-

Road in TORCS. 

 Description Simple Driver Epic Gazelle  

The number of times the car gets out of the road 0.0 0.0 11.0 

The total time spent outside the road 0.0 0.0 1366.3 

The total distance covered  by the car from the beginning of the race 3265.7 3265.7 4316.5 

The maximum distance covered by the car from the start line along the track line 652.1 652.1 1086.8 

The damage of the car 0.0 0.0 3383.0 

Total time for each lapse 0:03:31 0:01:30 0:00:44 

 

As Table 5 shows, out of the three drivers, the minimum time per lapse was achieved by 

the Gazelle controller. This is due to the Target Direction Unit. The target direction allows the 

car to adjust the required steering angle to the minimum angle to achieve the safest maximum 

speed and as a result, the Gazelle succeeded in achieving the best time. However, taking a 

smaller target angle required more distance to be covered by the car making it take a less 

efficient trajectory. Also, the number of times the car gets out of track is higher for Gazelle and, 

accordingly, the total time the car spent out of the track is potentially higher than for the two 

other controllers. Thus, higher damage happens as a result of the collision with the outer walls of 

the track when the car gets out of the track. 

The Simple Driver and Epic achieved less damage for five lapses compared to the 

Gazelle. The Simple Driver & EPIC both completed the five lapses with no damage, while 

Gazelle couldn’t complete the race to the end and it did only three lapses because the damage 

was too high. The game rules state that the race will be terminated early for any car for which the 

damage reaches a given threshold. We hope that further improvements to the procedural methods 

and the application of the learning methods will remedy this aspect.   
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5. Conclusions 
In the thesis, we hope to accomplish a well-developed and efficient algorithm for Gazelle. Such 

algorithm can improve the learning methods using neural networks and hill climbing.  We need 

to lead the racing car to achieve the efficient path and the efficient speed and to minimize the 

damage caused either by opponents or by getting out of track. For this we will be using 

procedural and learning methods to enable the controller to make a good decision can be made at 

every frame of the track.  

This work was a part of our participation in an international completion (GECCO-13). It 

was accepted and qualified to be a part of the final race. And it accomplished the eighth rank as 

the champion’s organizers announced [15]. This participation inspired us to continue developing 

our controller to be a part of the next year’s competitions for simulated car racing. 

Our ongoing effort to develop the Gazelle controller aims to predict an appropriate path 

and speed for the racing car in each frame of the track based on the available information from 

the server and based on the knowledge that the car has built using the learning methods. In fact, 

using neural networks could lead the controller to use more accurate equations based on previous 

data derived during the learning process. We expect that the more the networks are trained, the 

more precisely they will predict the driving information. We may also use hill-climbing methods 

to refine the learning process. 

Working with such a project helps us to improve our skills with programming using C++. 

It also introduces us to game programing and new learning methods such as neural networks and 

hill climbing. We hope this thesis satisfies our passion to make Gazelle controller a self-training 

controller and achieve higher orders in the next international champions.  
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