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Abstract 
 
 The experimentation plays an important role in Science, Engineering, and 
Industry.  The experimentation is an application of treatments to experimental units, and 
then measurement of one or more responses.  It is a part of scientific method.  It requires 
observing and gathering information about how process and system works.  In an 
experiment, some input x’s transform into an output that has one or more observable 
response variables y.  Therefore, useful results and conclusions can be drawn by 
experiment.   In order to obtain an objective conclusion an experimenter needs to plan 
and design the experiment, and analyze the results. 
 
 There are many types of experiments used in real-world situations and problems.  
When treatments are from a continuous range of values then the true relationship between 
y and x’s might not be known.  The approximation of the response function    
y = f (x1, x2,…,xq) + ε is called Response Surface Methodology.   This thesis puts 
emphasis on designing, modeling, and analyzing the Response Surface Methodology.  
The three types of Response Surface Methodology, the first-order, the second-order, and 
the mixture models, will be explained and analyzed in depth.  The thesis will also provide 
examples of application of each model by numerically and graphically using computer 
software. 
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1. Introduction 
 

 As an important subject in the statistical design of experiments, the Response 
Surface Methodology (RSM) is a collection of mathematical and statistical techniques 
useful for the modeling and analysis of problems in which a response of interest is 
influenced by several variables and the objective is to optimize this response 
(Montgomery 2005).  For example, the growth of a plant is affected by a certain amount 
of water x1 and sunshine x2.  The plant can grow under any combination of treatment x1 
and x2.  Therefore, water and sunshine can vary continuously.  When treatments are from 
a continuous range of values, then a Response Surface Methodology is useful for 
developing, improving, and optimizing the response variable.  In this case, the plant 
growth y is the response variable, and it is a function of water and sunshine. It can be 
expressed as 
 
     y = f (x1, x2) + ε 
 
 The variables x1 and x2 are independent variables where the response y depends 
on them.  The dependent variable y is a function of x1, x2, and the experimental error 
term, denoted as ε.  The error term ε represents any measurement error on the response, 
as well as other type of variations not counted in f.  It is a statistical error that is assumed 
to distribute normally with zero mean and variance σ2.  In most RMS problems, the true 
response function f is unknown.  In order to develop a proper approximation for f, the 
experimenter usually starts with a low-order polynomial in some small region.  If the 
response can be defined by a linear function of independent variables, then the 
approximating function is a first-order model.  A first-order model with 2 independent 
variables can be expressed as 
 
    εβββ +++= 22110 xxy  
 
If there is a curvature in the response surface, then a higher degree polynomial should be 
used.  The approximating function with 2 variables is called a second-order model:  
  
  εββββββ ++++++= 2112

2
2222

2
111122110 xxxxxxy  

  
 
In general all RSM problems use either one or the mixture of the both of these models.  In 
each model, the levels of each factor are independent of the levels of other factors. When 
the levels of each factor are not independent then a mixture model is appropriate for 
designing an RMS model.   
 
 In order to get the most efficient result in the approximation of polynomials the 
proper experimental design must be used to collect data.  Once the data are collected, the 
Method of Least Square is used to estimate the parameters in the polynomials.  The 
response surface analysis is performed by using the fitted surface.  The response surface 
designs are types of designs for fitting response surface.  Therefore, the objective of 
studying RSM can be accomplish by  
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(1) understanding the topography of the response surface (local maximum, local 

minimum, ridge lines), and 
 
(2) finding the region where the optimal response occurs.  The goal is to move 

rapidly and efficiently along a path to get to a maximum or a minimum 
response so that the response is optimized. 

 
 
2. Literature Reviews  
 
 The RSM is important in designing, formulating, developing, and analyzing new 
scientific studying and products.  It is also efficient in the improvement of existing 
studies and products.  The most common applications of RSM are in Industrial, 
Biological and Clinical Science, Social Science, Food Science, and Physical and 
Engineering Sciences.  Since RMS has an extensive application in the real-world, it is 
also important to know how and where Response Surface Methodology started in the 
history.  According to Hill and Hunter, RSM method was introduced by G.E.P. Box and 
K.B. Wilson in 1951 (Wikipedia 2006).  Box and Wilson suggested to use a first-degree 
polynomial model to approximate the response variable.  They acknowledged that this 
model is only an approximation, not accurate, but such a model is easy to estimate and 
apply, even when little is known about the process (Wikipedia 2006).  Moreover, Mead 
and Pike stated origin of RMS starts 1930s with use of Response Curves (Myers, Khuri, 
and Carter 1989). 
 
 According to research conducted (Myers, Khuri, and Carter 1989), the orthogonal 
design was motivated by Box and Wilson (1951) in the case of the first-order model.  For 
the second-order models, many subject-matter scientists and engineers have a working 
knowledge of the central composite designs (CCDs) and three-level designs by Box and 
Behnken (1960).  Also, the same research states that another important contribution came 
from Hartley (1959), who made an effort to create a more economical or small composite 
design.  The techniques used in mixture models became important to RSM users by the 
work of Scheffé in 1950s.  According to (Myers, Khuri, and Carter 1989), the important 
development of optimal design theory in the field of experimental design emerged 
following Word World II.  Elfving (1952, 1955, 1959), Chernoff (1053), Kiefer (1958, 
1959, 1960, 1962), and Kiefer and Wolfowitz were some of the various authors who 
published their work on optimality.   
 
 One of the important facts is whether the system contains a maximum or a 
minimum or a saddle point, which has a wide interest in industry. Therefore, RMS is 
being increasingly used in the industry.  Also, in recent years more emphasis has been 
placed by the chemical and processing field for finding regions where there is an 
improvement in response instead of finding the optimum response (Myers, Khuri, and 
Carter 1989).  In result, application and development of RMS will continue to be used in 
many areas in the future. 
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3. Response Surface Methods and Designs 
 
 Response Surface Methods are designs and models for working with continuous 
treatments when finding the optima or describing the response is the goal (Oehlert 2000).  
The first goal for Response Surface Method is to find the optimum response.  When there 
is more than one response then it is important to find the compromise optimum that does 
not optimize only one response (Oehlert 2000).  When there are constraints on the design 
data, then the experimental design has to meet requirements of the constraints.  The 
second goal is to understand how the response changes in a given direction by adjusting 
the design variables.  In general, the response surface can be visualized graphically.  The 
graph is helpful to see the shape of a response surface; hills, valleys, and ridge lines.  
Hence, the function f (x1, x2) can be plotted versus the levels of x1 and x2 as shown as 
Figure 3-1 (Montgomery 2005). 
 

 
Figure 3-1         Response surface plot  
 
                                         y = f (x1, x2) + ε 
 
In this graph, each value of x1 and x2 generates a y-value.  This three-dimensional graph 
shows the response surface from the side and it is called a response surface plot.  
Sometimes, it is less complicated to view the response surface in two-dimensional 
graphs.  The contour plots can show contour lines of x1 and x2 pairs that have the same 
response value y.  An example of contour plot as shown in Figure 3-2. 
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Figure 3-2        Contour plot  
 
 In order to understand the surface of a response, graphs are helpful tools.  But, 
when there are more than two independent variables, graphs are difficult or almost 
impossible to use to illustrate the response surface, since it is beyond 3-dimension.  For 
this reason, response surface models are essential for analyzing the unknown function f. 
 
 
4. First-Order Model 
 
4.1 Analysis of a First-Order Response Surface 
 
 The relationship between the response variable y and independent variables is 
unknown.   In general, the low-order polynomial model is used to describe the response 
surface f.  The polynomial models are usually a sufficient approximation in a small 
region of response surface.  Therefore, depending on the approximation of unknown 
function f, either first-order or second-order models are employed.   
 
 Furthermore, the approximating function f is a first-order model when the 
response is a linear function of independent variables.  The first-order model with N 
experimental runs is carrying out on q design variables and a single response y as 
follows: 
 
 )21       .........22110 , N,,  (i xxxy iiqqiii ……=+++++= εββββ          
 
      The response y is a function, f, of the design variables x1, x2,…,xq, plus the 
experimental error.  The first-order model is a multiple-regression model and iβ ’s are 
regression coefficients.   
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 First-order model is used to describe flat surfaces with or without tilted surfaces.  
This model is not suitable for analyzing maximum, minimum, and ridge lines.  Using 
first-order model approximation of f is reasonable when f is not too curved in that region 
and the region is not too big.  First-order model is assumed to be an adequate 
approximation of the true surface in a small region of the x’s (Montgomery 2005).  
Moreover, first-order model indicates which way is up and down in the response.  The 
method of steepest ascent is a procedure in which the algorithm follows the direction to 
move to increase response the most, which is used to identify a maximum.  The method 
of steepest descent consists in taking the direction of the most quickly decrease in the 
response, which is used to identify the minimum. 
 
 
4.2 Designs for Fitting the First-Order Model 
 
 The design of response surface models starts with the estimation of parameters, 
pure error, and lack of fit.  Also, the experimenter needs to design a model that is 
efficient.  Therefore, estimation of variances has to be taken into consideration.  The 
orthogonal first-order designs minimize the variance of the regression coefficients kβ .  
A first-order design is orthogonal if the off-diagonal elements of the (X´X) matrix are all 
zero (Montgomery 2005).  The orthogonal first-order designs includes 2q factorial with 
center points and 2q-k fraction with resolution III or greater.   
 
 
4.3 My Objective of First-Order Model 
 
 In order to conduct a first-order model, I intent to study the operating conditions 
that maximize the yield of a process.  There are two independent variables which 
influence the process yield: reaction time and reaction temperature.  I will use low-order 
polynomial terms to describe some part of the response surface.  Once the estimated 
equation is obtained, I will be able to use statistical techniques to check for the model 
adequacy. 
 
 My objective is to determine if the current levels or settings of the reaction time 
and the temperature result in a value of a response that is close to the optimum.  If the 
response is not near the optimum, then the application of the method of steepest ascent 
will be needed.  When the region of the optimum is located, I will begin to study a more 
structured response surface model such as second-order model. 
 
 
5. Second-Order Model 
 
5.1 Analysis of a Second-Order Response Surface 
 
 When there is a curvature in the response surface the first-order model is 
insufficient. Therefore, second-order model is useful in approximating a portion of the 
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true response surface with curvature.  The second-order model includes all the terms in 
the first-order model, and quadratic and cross product terms.  It is usually represented as 
 

 εββββ ++++=
<==

∑∑∑∑
ji

jiij

q

i
iii

q

i
ii xxxxy

1

2

1
0  

 
 The second-order models illustrate quadratic surfaces such as minimum, 
maximum, ridge, and saddle.  If there exits an optimum then this point is called 
stationary point.  The stationary point is the combination of design variables where the 
surface is at either a maximum or a minimum in all directions.  If the stationary point is a 
maximum in some direction and minimum in another direction, then the stationary point 
is a saddle point (Oehlert 2000).  The graphical visualization is very helpful in 
understanding the second-order response surface as it shown in Figure 3.2.  Specifically, 
contour plots can help characterize the shape of the surface and locate the optimum 
response roughly.   
 
 
5.2 Designs for Fitting the Second-Order Model 
 
 The most popular design for fitting the second-order model is Central Composite 
Design (CCD).  It consists of factorial point (from a 2q design and 2q-k fraction with 
resolution V or greater), central point, and axial points.  CCD often develops through a 
sequential experimentation.  When the first-order model shows an evidence of lack of fit, 
then axial points can be added to quadratic terms and with more center points to develop 
CCD.  The number of center points m at the origin and the distance α of the axial runs 
from the design center are two parameters in the CCD design.   
 
 There are a couple of ways of choosing α and m.  First, CCD can run in 
incomplete blocks.  A block is a set of relatively homogeneous experimental conditions 
so that an experimenter divides the observations into groups that are run in each block.  
An incomplete block design can be conducted when all treatment combinations cannot be 
run in each block.   In order to protect the shape of the response surface, block effects 
need to be orthogonal to treatment effects.  This can be done by choosing the correct α 
and m in factorial and axial blocks.   
 
 Also, α and m can be chosen so that the CCD is not blocked.  If the precision of 
the estimated response surface at some point x depends only on the distance from x to the 
origin, not on the direction, then the design is said to be rotatable (Oehlert 2000).  The 
rotatable design provides equal precision of estimation of the surface in all directions.  
The choice of α will make the CCD design rotatable by using either 4/2q=α  for the full 
factorial or 4/)(2 kq−=α for a fractional factorial.   
 
 In addition to CCD, Box-Behnken design can also be used for designing 
response surfaces.  This model is a combination of 3q factorials with incomplete block 
designs.   
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5.3 My Objective of Second-Order Model 
 
 With the purpose of exploring the second-order model, I intent to use a statistical 
modeling to develop an appropriate approximating relationship between the yield and the 
process variables: the temperature and the time.  I will fit a second-order model using 
Central Composite Design.  Since the second-order model is very flexible, consequently I 
can experiment with a wide variety of functional forms.  The method of least squares can 
be used to estimate the parameters. Once an appropriate approximating model is 
obtained, I can analyze to determine the optimum conditions. 
 
 Moreover, my other objective is to include in my study another data set which 
combines with more independent variables.  Therefore, the complexity and the design of 
the data will illustrate a different perspective on the second-order model. 
 
 
6. Mixture Model 
 
6.1 Analysis of a Mixture Experiment 
 
 In the mixture model the levels of each factor are independent of the levels of 
other factors.  The mixtures depend on the proportion of a variety of components.  For 
example, if design variables x1, x2,,…,xq denote the proportion of q components of a 
mixture, then 
 
  xk ≥ 0  k = 1,2,……,q     
and 
  x1,+ x2 +…+ xq= 1 
 
This kind of design space is called a simplex in q dimension.  For example, in two 
dimensions, the design space is the segment from (0,1) to (1,0); in three dimensions it is 
bounded by the equilateral triangle (0,0,1), (0,1,0), and (1,0,0) (Oehlert 2000).  The 
graphical representation of components for q = 2 and q = 3 is illustrated in Figure 6.1 
(Montgomery 2005).  
 
 

 
 
Figure 6-1   Constrained factor space for mixtures with q = 2 and q = 3 
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6.2 Designs for Fitting the Mixture Model 
 
 Simplex designs study the effects of mixture components on the response 
variable.  A {q,m}simplex lattice design for q components consists of points defined by 
the following coordinate settings (Montgomery 2005):  
 

 qkx
mmk .....,2.1            1,....,,0 2

,
1

==  

 
where each component takes the m + 1 equally spaced values from 0 to 1.  For example, 
let q = 3 and m = 2. 
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Here, the first 3 vertices are pure blends; other 3 points are binary blends.  In general 
simplex lattice designs provide N number of points. 
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 Another simplex lattice design is the simplex centroid design.  In this design, 
there are 2q-1 points that correspond to the q permutations of )0,.....,0,0,1( , the ⎟
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(Montgomery 2005).   

 
 
6.3 My Objective of Mixture Model 
 
 In this section, my goal is to analyze the use of synthetic mixtures of sand, silt, 
and clay which affect the growth of potatoes.  The form of mixture polynomial is slightly 
different from the standard polynomials used in response surface methodology.  
Therefore, I will use simplex designs that allow response surface model to be fit over the 
entire mixture space.  In the basis of analysis of variance for this case study, I will fit a 
model for the data.  The contour plots will also help analyzing the area of highest growth 
potatoes.  A second objective is to visualize how each component has an effect on the 
response relative to the reference blend.  As a result, I will conclude my study with an 
analysis of trace plots. 
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7. Conclusion 
 
 
 The success of RMS depends on an estimation of y at different locations in the 
response surface.  Therefore, the experimenter can draw a conclusion about whether the 
system contains optimum or improvement in response.  Before any experimenter starts 
the analysis of the response surface, the application of RMS first begins with investigation 
of factors or variables.  In order to obtain an efficient experiment, unimportant 
independent variables need to be separated from important ones.  One should never start 
an analysis of the surface until significant factors are identified.  After that, the response 
surface study can start.  Hill and Hunter outline four steps for response surface analysis 
(Myers, Khuri, and Carter 1989).  They are: 
 

(1) perform a statistically designed experiment, 
(2) estimate the coefficients in the response surface equation, 
(3) check on the adequacy of the equation (via a lack-of-fit test), and 
(4) study the response surface in the region of interest.  

 
These steps are very important because they help the experimenter answer certain 

questions regarding the response surface such as (1) how much replication necessary, (2) 
the location of the region of the optimum, (3) the type of approximating function 
required, (4) the proper choice of experimental designs, and (5) whether or not 
transformations on the responses or any of the process variables is required (Myers, 
Montgomery 1995).  Beside statistical and mathematical techniques the graphical 
representation of the response surface is also helpful in finding answers to problems.  
Due to broader applications in real-word problems, RMS will continue to attract 
statisticians, engineers, and scientists in order to develop, improve, and optimize new or 
existing products and processes.   
 
 Furthermore, my goal is to bring some perspective on how to design and analyze 
response surfaces in this thesis.  Some case studies will help to illustrate applications of 
response surface models.  Since many response surface designs are available, I will only 
use the ones which will be appropriate for the data.  Moreover, the thesis will include a 
statistical analysis of the surface numerically and graphically using Minitab.  The 
computations in matrix form will be accomplished by Excel.  When the response surface 
requires a further study, the simulated response variables will be obtained by           
R-project.  Therefore, each RSM model will be concluded by detailed analysis of the case 
studies. 
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