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Abstract 

 

This thesis presents the design, development, and implementation of an intelligent agent 

capable of solving a physical puzzle. The puzzle is a three dimensional maze in which a 

marble must be moved from its starting point to a target cell in the opposite corner.  The 

movement of the marble is strictly the result of movement of the maze itself, the marble's 

response to gravity, and collisions with the walls of the maze. The physical nature of the 

puzzle provides an interesting challenge for the intelligent agent attempting to solve it, 

since it does not have complete control over the effects of its actions, and is not able to 

predict with certainty what those effects will be.  

 

A software framework is developed to integrate the artificial intelligence, physics 

simulation, and computer graphics required to solve the puzzle. A control scheme is 

designed to enable the agent to perform the physical moves to be simulated. Several 

solution algorithms are developed and implemented, incorporating varying levels of 

knowledge of the maze's geometry and the physics involved. In general, it is shown that 

by increasing the 'intelligence' of the agent, the performance was significantly improved. 

  

This thesis is a unique integration of artificial intelligence, physics simulation, and 

computer graphics. The result is the graphical animation of the solution to a physical 

puzzle that could not be solved without each of the three technologies. 
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 1. Introduction 

 

The system developed for this Master's thesis is an intelligent agent that uses elements of 

artificial intelligence to determine and execute the necessary moves required to solve a 

physical puzzle.  

 

The specific puzzle is a random 2 or 3-dimensional maze, similar to those shown in 

Figures 1 and 2.  The goal of the puzzle is to roll a marble from its starting location in 

one corner of the cube to a target cell at the opposite corner. The agent solves the puzzle 

by rotating the maze to move the ball, which then reacts in response to gravity.  

 

         
 

Figure 1: 2-D Maze                                                     Figure 2: 3-D Maze 
 

This thesis differs considerably from other related path-finding algorithms present in the 

literature. In most cases, it is assumed that the intelligent agent searching for a path to a 

desired location or state has complete control over the location to which the object is 

moved. The Role of Simulation in Developing Game Playing Strategies discusses two 

typical examples [Jones and Thuente, 1990]. In this paper, strategies are developed for 

playing the games Tic-tac-toe and ConnectThree. In both of these games, the state of the 

game immediately after a move is known with certainty before the move is made.  
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The only exception found in the literature is for blind searches, where there is the 

possibility of running into an obstruction that prevents the move, keeping the object in its 

current state. This situation is covered in A Comparison of Fast Search Methods for Real-

Time Situated Agents [Sven Koenig 2004]. Unlike this thesis, the agents studied in that 

paper also acted on a graph that was undirected, and backtracking the refore was always 

possible.  

 

One of the key elements of this thesis however, is the creation of an intelligent agent that 

can deal with events that are not directly initiated by the agent. These events, which are 

an unpredictable consequence of the agent’s actions, can place the object in an 

unpredictable, potentially unrecoverable state. This added dependency on the physics 

simulation requires the agent to be able to learn the effects of other forces acting upon the 

object and be able to find a solution without complete control.  

 

The graphical output is also a unique and critical component to the system, providing the 

real-time 3 dimensional animation of the problem solution that would be very difficult to 

visualize without it. 
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2. Literature Review 

 

Modern advances in the processing power of personal computers have made the real-time 

accurate simulation of physics possible for an affordable price. Advances in graphics co-

processors have made it possible to render the three dimensional results of that simulation 

in real time. Much of this advancement in technology has been driven by the mass market 

for computer games, many of which require sophisticated software or 'game engines' to 

handle the physics, artificial intelligence, and graphical rendering needed by the game. 

 

Michael Lewis and Jeffrey Jacobson in the January 2002 Communications of the ACM 

noted that "The most sophisticated, responsive interactive simulations are now found in 

the engines built to power games” [Lewis and Jacobson, 2002]. Lewis and Jacobson also 

observed that the modularity of game engines (of which the 'physics engine' is a 

component) allows the game code to be used for other scientific research. They give an 

overview of several research projects in the areas of robotics and artificial intelligence 

that are utilizing game engines originally developed for the games "Quake" and "Unreal 

Tournament".  

 

Integration and Evaluation of Exploration-Based Learning in Games [Karpov et. al. 

2006] describes how a system called the Test bed for Integrating and Evaluating Learning 

Techniques (TIELT) enables researchers to take advantage of video game environments 

to test new learning algorithms. They used (TIELT) to test the NeuroEvolution of 

Augmenting Topologies (NEAT), an artificial intelligence algorithm in the Unreal 

Tournament video game environment. The NEAT algorithm is used for path-finding in a 

game map.  They also describe the high level architecture of their test environment, 

which much like this thesis, separates the 'Game Model' (simulation) from the 'Decision 

System' (knowledge engine) and interfaces the two. 

 

A major component of many video game environments that is required by this thesis is 

the physics engine, which is responsible for performing the physical simulation. The 

wikipedia site: http://en.wikipedia.org/wiki/Physics_engine lists several open-source and 
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commercial physics engines that can be incorporated in computer science projects 

requiring real-time or even high precision physics simulation. One of the physics engines 

listed at this site, 'Newton Game Dynamics', is the engine used for this project 

[http://www.physicsengine.com]. 

 

In addition to the physical simulation, this thesis requires algorithms to determine the 

solution of the maze. This aspect of the project is very much related to path finding, or 

traversal of graphs. Much research has been done in the area of graph theory to develop 

algorithms for determining optimal paths to follow on a graph or game tree to lead to a 

desired state. For example, Artificial Intelligence: A Modern Approach [Russell and 

Norvig, 1995] gives a good description of the A* and other search algorithms, which can 

be used to find the least-cost (shortest) path between two nodes in a graph. It also covers 

the development of heuristic functions to choose between possible branches at a given 

node of the graph. These methods provide a basis for the algorithms developed as part of 

this thesis, but were modified to account for the fact that the results of each move in the 

physical puzzle are not completely known before the move is made. Artificial 

Intelligence for Games [Millington, 2006] describes the representation of a game 

environment, and how graph search algorithms can be applied to path finding in games. 

 

Optimizations of Data Structures, Heuristics, and Algorithms for Path-Finding on Maps 

[Cazenave 2006] presents optimizations to the A* and IDA* algorithms as applied to 

path-finding on maps. Among the suggestions made in this paper are the use of an array 

of stacks rather than a priority queue for maintaining open nodes, the use of 'lazy cache 

initialization', and adding a constant to the next threshold of IDA*. The use of heuristics 

such as the ALT and ALTBestp is recommended for path-finding on maps, and it is 

suggested that they are especially appropriate when applied to 'game maps that are 

complex and are close to mazes'. 

 

A comparison of Fast Search Methods for Real-Time Situated Agents [Sven Koenig 

2004] describes how path-planning problems (in computer games) are different from 

traditional off- line search problems in other fields because autonomous agents in games 



 5 

will initially have incomplete knowledge of the terrain which results in a large number of 

contingencies that makes planning difficult.  The paper discusses how path planning for 

agents in games must interleave planning with movement, and compares real-time and 

incremental heuristic searches for path planning in mazes. It also discusses how heuristics 

such as the Manhattan distance can be very misleading when applied to mazes. 

 

As part of this project, heuristics were developed to determine which is the best of several 

possible moves that can be made as part of the search for the physical solution.  Rhys 

Pryce Jones and David Thuente in 1990 demonstrated the use of repeated simulations of a 

game to test possible heuristics for move selection when the complete game tree is 

intractable [Jones and Thuente, 1990]. 

 

In order to utilize incremental heuristic search algorithms, it is necessary to divide the 

search space into a finite number of discrete states, representing the marble’s current 

location and the orientation of the maze. Mark Atkin and Paul Cohen suggest a method 

for using “critical points” for defining state boundaries to facilitate the use of state-based 

search algorithms in continuous dynamic search spaces. In their paper, they explain the 

need to distinguish between states only when the “consequences of being in state A differ 

from those of being in state B”. Their algorithm for implementing critical states is 

demonstrated in the 2 dimensional graphical game simulation “Capture the Flag” [Atkin 

and Cohen, 2000].  

 

Also required for this thesis is the ability to randomly generate the geometry of the maze.  

Mark Allen Weiss, in Data Structures and Problem Solving Using C++ [Weiss, 2000] 

demonstrates how the 'Disjoint Set' class can be implemented to generate two 

dimensional mazes with a single unique solution. 

 

The display and animation of the solution to this thesis requires the effective use of 

OpenGL computer graphics techniques, especially for the display of transparent objects 

(since everything that happens occurs inside the maze). Advanced Graphics 

Programming Using OpenGL [McReynolds and Blythe, 2005] describes the use of alpha 
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blending combined with the careful ordering of object rendering to handle the display of 

transparent objects. Another article found at: http://www.opengl.org/ 

resources/faq/technical/transparency.htm contains information on using selective lighting 

and multiple rendering to achieve the appearance of clear 'glass' objects. 

  

Finally, the various components of this system (physics simulation, artificial intelligence, 

graphical display) had to be interfaced to enable them to stay synchronized during the 

real-time simulation. http://www.gaffer.org/game-physics/fix-your-timestep is an 

excellent article on synchronizing a physics simulation with the graphical display, 

maintaining a smooth animation while satisfying the time-step requirements of the 

physics engine. Artificial Intelligence for Games [Millington, 2006] describes the use of 

state machines to control the behavior of the Artificial Intelligence in games.  
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3. Problem Description and General Settings 

 

In this section we expand on the objectives of this thesis described in the introduction, 

and discuss theoretical and practical aspects of its solution development. 

 

3.1 General Discussion 

 

The mazes used in this thesis are a three dimensional extension of the common two 

dimensional labyrinth. A random two dimensional maze can easily be created by viewing 

it as rows and columns of square 'cells' separated by walls. The walls are then randomly 

chosen and removed until there is a single path connecting any two cells, including the 

starting and ending cells. The extension of this model to three dimensions is fairly 

straightforward. The 'cells' of the maze are cubes instead of squares, and each cell has 6 

walls corresponding to the six directions that one can move to from that cell. 

 

The methodology implemented for determining the physical solution to the maze, i.e. 

moving the marble from the starting cell to the target cell, is based on a control scheme in 

which the maze itself is physically rotated, and the marble moves in response to gravity. 

Each rotation of the maze will be referred to as a 'move', and is implemented as a rotation 

from one well-defined orientation of the maze to another. This control scheme enables 

the analysis of the system as a finite number of discrete states, each corresponding to a 

specific marble location and maze orientation. The states and the moves between them 

can then be represented as a graph or network and elements of graph theory can be 

applied when determining the physical solution. 

 

Naturally, the algorithm we propose is not the only control scheme that could be 

implemented to solve this problem. For instance, a control scheme continuously 

analyzing and responding to the movement of the marble, and therefore not dependent on 

specific discrete states, could be developed. It is also possible that such a control scheme, 

or some other, could physically solve mazes that are unsolvable given the methods used 
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for this thesis. The subject of this thesis however is the analysis and solution of the 

system as a set of discrete states. Modeling the problem in this way facilitates the use of 

well-known Artificial Intelligence search algorithms to find the solution.      

 

Describing this system in terms of states and moves that cause the transition between 

them has some interesting analogies to traditional game theory. The agent attempting to 

select the optimal moves can be considered as one 'player', and the physical simulation as 

an opposing player making a move in response to the agent's. Some of the algorithms 

implemented in this thesis do in fact involve the agent attempting to anticipate the 

responding 'move' that will be made by the physics engine when choosing its next move 

to make, similar in concept to the popular Minimax algorithm [Russell & Norvig, 1995]. 

 

The primary goal of this thesis is to develop a solution to a physical puzzle where the 

consequences of the moves made are complex enough that they can only be determined 

through simulation. This particular puzzle (the three dimensional maze) does in fact 

appear simple enough that a deterministic physical solution might be found without 

resorting to simulation. The geometry consists only of rectangular prisms (the walls) and 

a single sphere (the marble). Considering all the physical phenomena that can affect the 

outcome of a move in reality however, this is not as simple as it first may appear. Not 

only will the marble accelerate in response to gravity, but there are also the effects of 

static and kinetic friction to consider, the resulting angular momentum, and its effect on 

collisions, some of which can involve multiple walls. In fact, as will be discussed later in 

this document, some of the moves encountered in this system are not repeatable in the 

simulation itself.   

 

It is likely that any intelligent agent attempting to completely determine on its own the 

results of its moves would essentially be performing a simulation, or at least doing many 

of the calculations involved in a reasonably accurate simulation. Even if the agent could 

accurately determine the results of its actions, the goal of this thesis is to model a system 

where it does not have complete knowledge, and must solve the puzzle without that 

information. The fact that the simulation itself is not always repeatable means that the 
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agent, which must contend with the results of that simulation, can never be comple tely 

certain what the results of its actions will be. 

 

3.2 Maze Generation 

 

The methodology for generating the geometry of the mazes begins with generating all 

possible walls, then randomly selecting and removing walls until there is a single unique 

path connecting any two cells. This methodology of generating mazes is analogous to 

Kruskal's algorithm for generating minimum spanning trees. Kruskal's algorithm starts 

with an empty set of edges (arcs) and adds edges to it in order of their cost, discarding 

those that create cycles, until the graph is connected [Weiss, 2000]. The paths between 

the cells of the maze can be viewed as arcs between the nodes of a graph, and the goal is 

to make sure that there is a single arc between any two nodes with no cycles. Unlike 

Kruskal's algorithm, we select the edge (the walls to remove) at random, instead of 

selecting the next edge of minimum cost.  

 

A 'Collection of Disjoint Sets', also commonly known as the 'Union / Find" data 

structure, provides a convenient design pattern for creating the spanning tree. It is used to 

keep track of which cells are already in the same set (meaning that they are already 

directly or indirectly connected), and joining separate sets when a wall separating two 

sets of cells is randomly chosen to be removed.  This methodology for generating the 

spanning tree guarantees that that there is one and only one path between any two cells 

[Weiss, 2000].  

 

The way the Collection of Disjoint Sets is implemented in this thesis to generate a maze 

is as follows: 
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1. The numbers of the internal cells of the maze are identified and each is stored in a 

separate set (the numbering conventions for the maze cells and walls are covered 

in Section 6.2 'Computer Model'). 

2. The numbers of the internal walls that separate the internal cells (walls that can be 

removed) are stored in a list of remaining internal walls. 

3. From the internal walls that have not yet been removed (the remaining walls), one 

is chosen at random. 

4. If the two cells separated by the wall are currently in different sets (meaning that 

there is no path between them), their sets are joined, and the wall is removed from 

the list of remaining walls.  

5. The process is repeated from step 3 until only one set of cells remains. 

 

A unique path from the starting cell to the target cell actually exists as soon as the starting 

and target cells are in the same set, but step 5 above guarantees that there is a unique path 

between any two cells, thus creating the numerous ‘incorrect’ paths that are an important 

characteristic of such mazes. It is in fact these incorrect paths that provide much of the 

challenge for the intelligent agent attempting to find a physical solution to the maze. 

 

The list of remaining internal walls used in the above algorithm is saved and used by 

several of the software components of the system, as discussed later in Section 6 

'Implementation'. It is used to build the ‘collision mesh’, which is the representation of 

the physical entity used by the Physics Engine. It is also used by the Knowledge Engine 

to determine the absence or presence of walls that might block the path of the marble. 

Finally, it is used by the Rendering Engine to identify those walls that must be displayed 

on the screen. 

 

The method described previously for generating a three dimensional maze creates what 

will be referred to in this thesis as an ‘all- layer’ maze, meaning that every cell in the 

cubic maze is part of the actual maze generated, and possibly part of the theoretical or 

physical solution path. This type of maze is useful for some development and testing, but 
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has some serious disadvantages as well. The complexity of an all- layer maze is on the 

order of N3, making the simulation of large mazes impractical. Perhaps a more serious 

drawback to all- layer mazes is that it is extremely difficult to interpret the visual 

simulation results. As can be seen in Figure 3, the numerous internal layers of maze walls 

make it virtually impossible to visualize the internal structure. 

 

An alternative type of maze developed for testing the various algorithms used in this 

thesis will be referred to as an ‘outer- layer’ maze. This type of three dimensional maze is 

generated such that only the outer layer of cells is part of the maze. The inner (N-2)3 cells 

of the cube are just empty space. The starting and ending cells are the same as for the all-

layer maze, but the solution is constrained to the cells which are in contact with the 

outside walls. The outer layer of cells on all six sides of the cube are part of a single 

maze, so the unique solution to the maze can go through any of the sides, possibly 

visiting a side more than once. Figure 4 shows an outer- layer maze of the same size as the 

all- layer maze in Figure 3. 

 

 

            
 

Figure 3: Sample All-Layer Maze                                 Figure 4: Sample Outer-Layer Maze 
 

There are several advantages to using this type of maze for testing the solution 

algorithms.  First, as can be seen in Figure 4, with the maze making up only the outer 
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layers of the cube, it is much easier to see what is happening in the graphical display. Not 

only does the marble remain close to the surface, but all the lines forming the walls at the 

‘core’ of the maze have been eliminated, making the graphical representation much 

clearer. Secondly, building a maze with only the outer layers of the cube enables larger 

mazes to be implemented with the same memory and computing capability, since the 

complex collision geometry that must be handled by the physics engine is restricted to the 

walls of only the outer cells. 

 

It is important to understand that the geometry of such outer- layer mazes does not reduce 

this problem to a two dimensional case. All six sides of the cube are part of a single maze 

with a unique solution. From a cell in the edges or corners of the maze, the marble can 

also potentially travel along all three axes, so the algorithms implemented cannot deal 

with this by ignoring one dimension. In fact, all of the solution methods developed for 

this thesis were tested, without modification, on both all- layer and outer-layer mazes, but 

much of the performance data was derived using outer- layer mazes, due to the excessive 

time required to test numerous all- layer cases. 

 

Although we still have the benefit of testing and seeing a ‘true’ three-dimensional case, 

constraining the maze to the outer layer does in fact reduce the memory and time 

complexity to the order of N2 instead of N3. There are now N3-(N-2)3 = 6N2-12N+8 cells 

in the maze, rather than N3. This does not make a huge difference in size for the small 

mazes that are used in this thesis (since most of the cells are in the outer layer), but when 

coupled with other advantages such as improved visibility and three-dimensional 

geometry, they are well-suited as test cases for the agent attempting to solve the maze. 

 

 The algorithm used to generate the outer-layer mazes is fundamentally the same as that 

used to generate all- layer mazes. It still involves randomly selecting walls to be removed. 

Now however, only those walls positioned between the outer- layer cells of the maze can 

be removed. These walls must be identified before applying the maze-generation 

algorithm. In addition, since the cells making up the internal 'hollow' core of the maze are 

no longer part of the maze, the walls associated with those cells are not added. Some of 
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these walls are however needed to enclose the outer layer, and must therefore be added as 

an additional step of the maze generation. 

 

3.3 Analysis of the Theoretical Solution 

 

The mazes in this thesis can be analyzed as a graph or tree, where the nodes of the graph 

represent the cells of the maze and the connections between them represent an open path 

between the cells. For example, Figure 5 below represents a simple 2 dimensional maze 

and Figure 6 shows the undirected graph representing that maze. 

 
 
 

 
 
 
 
 
 
 
 

 
 

Figure 5: Example 2D Maze                                      Figure 6: Graph Representing the maze 

 

This graph, representing the unique path between each cell of the maze, will be referred 

to as the 'theoretical' graph. This denomination is chosen to indicate that these are the 

paths that could be followed if there were no physical restrictions on potential moves 

from one cell to another, as there are for the 'physical' solution which is developed for 

this thesis. Notice that the theoretical graph is actually a tree because of the way the maze 

is generated. The branching factor is equal to three, twice the number of dimensions 

minus one. This is due to the fact that any node in the tree will have branches 

corresponding to each of the two directions along each axis. The path will have come 

from one of these directions, so that direction is subtracted from the branching factor. 

However, when implementing this tree to perform a search from any node to any other, 

the root will have an additional branch, since that node will have no parent, and therefore 
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no 'from' direction. Figure 7 shows the general form for a two dimensional theoretical 

graph. 

 

 
   

Figure 7: Theoretical Graph for Two-Dimensional Maze 
 

For an actual instance of this model (a specific randomly generated maze), many of these 

nodes would be absent from the graph, since they would correspond to cells that are 

unreachable (due to a wall blocking the path) or to locations that are outside the maze 

(blocked by an outer wall). 

 

For a three dimensional maze, the theoretical graph would look similar but have up to six 

branches from the starting cell and 5 for any other cell, since movement is possible in two 

additional directions along the Z axis. The cells and paths can be viewed as a tree with a 

branching factor of 5 (the six directions in space minus the direction that the cell was 

reached from). This representation of the three dimensional maze as a tree enables the 

two dimensional visualization of many aspects of this three dimensional problem, and it 

will assist in developing and representing many aspects of its solution. 

 

Given the definition of a maze that is being implemented (with a single unique path 

between any two cells), the theoretical graph, in fact, forms a spanning tree, with no 

cycles. It is also undirected, since we are not considering any physical limitations that 

would prevent movement in either direction. Another relevant aspect of this method is 

that the complete tree, starting at any cell, will contain one node for every cell in the 

maze. 

 

Starting 
Cell 

+X -X +Y -Y 

-X +Y -Y +X +Y -Y …
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The similarity of this problem to traditional graph theory is a critical element of this 

thesis. The representation of a maze as a graph or tree provides a precise definition of the 

notion of ‘maze’ that facilitates the construction of mazes as described previously. It also 

gives us a mathematical model of the maze that can be used in the development and 

analysis of a solution to the maze.  

 

The path in the tree from the any starting cell of the maze to any target cell without 

physical considerations will be referred to as the 'theoretical solution', as opposed to the 

'physical solution', which involves physical simulation and is dependent upon rotation of 

the maze and the marble's response to it. Finding the theoretical solution is a fairly 

straightforward goal studied in Artificial Intelligence. A simple depth-first search 

algorithm with backtracking can be applied to the theoretical graph to find the path 

[Russell & Norvig, 1995]. This algorithm is guaranteed to be complete, and unlike many 

applications of a depth first search, the resulting solution will also be optimal (since there 

is only one solution path).  

 

This theoretical solution is used by algorithms in this thesis to improve the search for the 

physical solution. The length of the theoretical solution line (expressed in the number of 

cells along the path) is used as a heuristic, indicating the shortest possible physical path 

from a given cell to the target cell.  

 

3.4 Analysis of the Physical Solution 

 

The physical solution to the maze is much more challenging. Unlike finding the 

theoretical solution, in the simulated world, the agent rotating the maze does not have 

definitive knowledge of what the outcome of its move will be. The complexity of the 

geometry combined with the interactions (collisions and responses) between the marble 

and the walls make it difficult if not impossible to predict with certainty which cell the 

ball will end up in. Comparing this to a graph, the effect is that we cannot determine 

which node of the graph an action (path along the physical solution) will lead to. In fact, 
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some nodes of the graph may represent states that are impossible to attain. This could 

occur due to missing walls that prevent the marble from resting in a given state.  

 

Perhaps even more relevant is the fact that backtracking to a previous state will often not 

be possible. It could even be the case that finding a sequence of actions (rotations) that 

leads back to a previous state is as difficult, or more difficult, than finding a solution to 

the goal state.  Using the example given earlier, Figures 8, 9, and 10 illustrate the 

difference between the 'theoretical' solution to the maze and the solution that is physically 

possible. For example, in Figure 10 we can see that if the maze were oriented such that a 

marble was resting in cell #3, a counter-clockwise rotation of the maze would result in 

the marble being located in cell # 9, rolling past cell #6.   

 
                  

 
 

Figure 8: Example 2D Maze  Figure 9: Theoretical Solution       Figure 10: (partial) Physical Solution 
 

Unlike the theoretical solution graph, the graph suggested by Figure 10 is in fact directed. 

This is due to the fact that some moves are not reversible. For instance, we can roll the 

marble from cell 5 to cell 3 in a single move, but we cannot move directly from cell 3 

back to cell 5. The fact that this graph is directed has serious implications for the physical 

solution of the maze. It implies that deterministic backtracking cannot be used when 

searching for the physical solution. This graph also illustrates some other important 

differences from the theoretical graph that are directly related to the challenges of finding 

a physical solution. The arcs in the graph do not necessarily connect cells that are 

adjacent in the maze. They do not form a spanning tree, meaning that some cells are not 
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reachable by any means. The graph can also contain loops, which must be avoided in the 

physical solution.  

 

There is a significant difference between this graph and the 'Physical State Graph' that is 

actually implemented in this thesis to describe the physical states and the moves between 

them. The physical state graph that is implemented (as described later) considers not only 

the maze locations, but the physical orientation of the maze as well. It does however 

share the same characteristics (directed, not spanning, contains loops) as the graph in 

Figure 10.  

 

Figures 11 and 12 illustrate the difference between the theoretical and physical solutions 

to a maze. This particular case was one that was generated at random and solved as 

illustrated using one of the algorithms implemented in the software developed for this 

thesis. The cells of the maze are numbered starting in the lower- left corner at cell one and 

increasing from left to right, bottom to top. The first illustration shows the 'theoretical' 

path through the maze, which can be easily found using a depth-first search algorithm 

with backtracking. The second illustration shows the optimal physical path that could be 

taken by the marble given a control scheme in which we begin with the 'Start' cell at the 

bottom and rotating one-quarter revolution at a time about a central axis.   

 

                 
 

Figure 11: Theoretical Solution                       Figure 12: Physical Solution 
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Figure 13: Move 1                            Figure 14: Move 2                          Figure 15: Move 3 
 
 
 
 

       
 

Figure 16: Move 4                            Figure 17: Move 5                          Figure 18: Move 6 
 

Figures 13 to 18 show the progress made at each step in the solution presented in Figure 

12. The Marble would start out at rest in cell 1.  A clockwise rotation would cause the 

marble to move to cell 3. Another clockwise rotation would relocate the marble to cell 

12. A counter-clockwise rotation now moves the ball to cell 4. The next move is another 

counter-clockwise rotation, which results in the marble remaining in cell 4. Another 

counter-clockwise rotation causes the marble to move from cell 4 and make its way to 

cell 14, and a final move then rolls the ball to the goal, cell 16. 

 

Figure 19 shows the path followed by the marble during the actual simulation of this 

example. 
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Figure 19: Simulation of Example 
 

Notice that in Figures 15 and 16 the marble has remained in the same location – cell 4. 

For the purpose of the physical simulation however, this move was necessary to orient 

the maze such that the next move would result in the desired outcome: moving the marble 

to cell 14. In other words, it took 2 counter-clockwise rotations to move the marble from 

cell 4 to 14. The results of a given move are therefore dependent not only on the previous 

location of the marble, but also on the previous orientation of the maze.  

 

This illustrates that for the purpose of finding and simulating the physical solution, each 

state (which will later be implemented as nodes on the physical state graph) must be 

defined not only by the location of the marble, as was the case with the theoretical 

solution, but also by the orientation of the maze.  I have therefore adopted the convention 

of numbering each distinct state such that the State = (Marble Location -1) * (Number of 

Possible Orientations) + Orientation. This equation is easily solvable for the value of the 

State, Orientation, or Location, given the number of possible orientations and the other 

two values. For the two-dimensional maze used as an example above, the 'Number or 

Possible Orientations' is equal to 4, since the rotations (moves) were each of 90 degrees. 

For the three dimensional mazes described later in this thesis, more orientations are 

required. 
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The algorithms developed for this thesis are all fundamentally based on building and 

analyzing a 'Physical State Graph' defined by the physical states (marble location and 

maze orientation) and the moves (rotations of the maze) that transition the system from 

one to another. 

 

Figure 20 shows the general form for the physical state graph in which we have two 

possible moves that can be made at any time, as is the case in the example in Figures 13 

to 18 above. The states are represented as the nodes of the graph. The arcs connecting the 

nodes represent the moves, or rotations that can be applied to the maze to change the state 

of the physical system. The branching factor, or number of connected nodes, is equal to 

the number of moves that can be made from a given state. This in turn is dependent upon 

the possible orientations of the maze. In the example given previously in Figures 13 to 

18, the branching factor would be 2, one for a 90 degree counter-clockwise rotation and 

one for a 90 degree clockwise rotation. 

  
 

 
   

Figure 20: Physical State Graph for Two-Move Control Scheme 
 

There are some important differences between the physical state graph depicted in Figure 

20 and the theoretical graph discussed earlier and shown in Figure 9. Like the Physical 

Graph shown in Figure 10, and by the same reasoning, this Physical State Graph is 

directed, non-spanning, and contains loops. Other important differences exist between 

this and the theoretical graph. In this graph, multiple nodes can correspond to a given cell 
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in the maze. This is of critical importance when the agent needs to determine if a desired 

cell has been reached, or when deciding if one node is 'closer' to the target cell than 

another.  

 

The branches in the theoretical graph correspond to adjacent cells in each direction. Since 

theoretical movement in a given direction may not be possible (due to the presence of 

walls), there will be many branches that are absent in the theoretical graph. In the 

physical state graph however, the branches correspond to the physical moves rotations of 

the maze that can be made. Since all defined rotations of the maze can be made at any 

time, all branches in the physical state graph are defined. This does not however imply 

that all defined states will be present in the maze. Many if not most of the defined states 

will simply not be reached by any branches in the graph, either because the cells 

corresponding to these are not reachable, or more likely, because the physics do not allow 

the marble to stabilize in that state (one or more of the walls required to stop it have been 

removed). It is also relevant that unlike the theoretical graph, the nodes in the physical 

state graph that are directly connected do not necessarily correspond to adjacent cells in 

the maze. This is due to the fact that a single move can result in the marble staying in the 

same cell (in a different orientation) or moving many cells away. 

 

When the simulation begins, the system is initialized with only one node in the physical 

state graph. This initial node represents the marble's starting location and the initial 

orientation of the maze.  From this initial node, there will be branches or arcs to other 

states that are currently unknown (since we are assuming that the marble location 

resulting from a move can only be determined by the physics simulation). After a move is 

made, and the marble has come to rest in a 'stable' state, the system can obtain the 

resulting marble location from the physics engine. The physical state graph is then 

updated with the resulting state for that branch.  

 

Figure 21 shows the physical state graph corresponding to the first move depicted in 

Figure 13 from the previous example (duplicated here for convenience). The '0' state 

represents the initial starting location of the marble (cell 1) and the initial orientation 



 22 

(orientation 0). The first move rotates the maze to orientation 1 and moves the marble to 

cell 3, corresponding to state 9 ((Marble Location -1) * (Number of Possible 

Orientations) + Orientation).  

 

                            
 

                   Figure 13: Move 1                                Figure 21: Physical State Graph after First Move 
 

Here we can see one of the primary characteristics that distinguish this thesis from many 

other search applications found in the study of artificial intelligence.  For our purposes, 

after the first move is made, the marble is now physically located in state 9. Although we 

could in this case rotate the maze in the opposite direction to get the marble back to state 

0, this is not generally the case, and therefore cannot be assumed. For example, referring 

again back to the previous example, Figure 17 (duplicated below) shows a counter-

clockwise rotation moving the marble from cell 4 to cell 14. It is easy to see that no 

single move will move the marble back to cell 4. In fact it is entirely possible in some 

mazes that there would be no move or sequence of moves that will return the system to a 

previous state. What this means is that this is a directed graph and backtracking, which 

could be used in finding the theoretical solution to the maze, cannot be utilized in finding 

the physical solution.   
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Figure 17: Move 5 
 

This has some significant consequences for this system. Looking back at Figure 21, this 

implies that in order to evaluate the branch off the root that was not initially chosen (the 

unknown state to the left of '0' that corresponds to a counter-clockwise rotation from the 

initial state), we must somehow find another path to it or a path back to the initial state. It 

is even possible that a path not initially chosen in fact leads directly to the goal state, and 

choosing the wrong move will prevent us from ever getting back to it.  

 

3.5 Simulation of the Physical Solution 

 

In order to test and demonstrate the solution algorithms developed for this thesis, the 

Newton Game Dynamics physics engine was used to model the maze and marble, and 

simulate the actions performed on the system. For the simulation to be performed, a 

control scheme was developed to define the possible orientations of the maze and the 

actions that can be performed on it. 

 

The possible orientations of the maze were chosen such that in each orientation, one 

vertex of the maze is pointing straight upward. This choice of orientations ensures that 

after a move, the marble will come to rest in the corner of a cell of the maze, in a specific 

state. The moves are therefore simple rotations of the maze from one orientation to 

another. The axis of the rotation can easily be computed as the cross-product of the 

vectors representing the starting and ending orientations.  
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Figure 22 illustrates how this works. The green line is a vector representing the starting 

alignment. It points from the center of the cube to the vertex at the top. The red vector 

points from the center of the cube to the vertex that is to point straight upward after the 

move. The blue vector is the cross product of the green and red vectors. Since the cross 

product is necessarily perpendicular to both the starting and ending orientation vectors, it 

can be used as the axis of rotation. Also, since for every possible move, the starting and 

ending orientation vectors will always point from the center of the cube to different 

vertices, they cannot be parallel and the cross product will therefore always exist.  

 

 
 

Figure 22: Orientations and Axis of Rotation 
 

The simulation of a move is performed by applying a sufficient amount of torque about 

the axis of rotation, which is modeled as a 'Hinge' in the Newton physics engine. 

Essentially, this is very similar to the way a human would solve the puzzle by rotating the 

maze with his or her hands and wrists to a new orientation to get the marble to roll in the 

desired direction. Section 6, 'Implementation', discusses this control scheme and the use 

of the Newton physics engine in greater detail.  
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3.6 Additional Challenges 

 

The physical aspects of this problem provide several interesting challenges for this thesis. 

These challenges are described in this section, and their solutions are presented in 

subsequent sections.  

 

Unsolvable Mazes 

 

In a previous section, a fairly straightforward method for building a random maze was 

described. One of the challenges of this thesis is created by the fact that not all mazes 

built in such a way are physically solvable. The simple 2-dimensional example in Figure 

23 below shows how this can happen. Although this is a perfectly legitimate maze (all 

cells are connected by a unique path), we can see that any simple rotation, in either 

direction, would cause the object in the maze to fall or roll between cells A and B, never 

reaching the goal. 

 

 
Figure 23: Physically Unsolvable Maze 

 

This problem could be solved in a number of ways. One would be to attempt to quickly 

shift the direction of rotation while the object is falling to get it to go through the opening 

leading to the end.  This would be very difficult for an intelligent agent, and might not be 

physically possible in some similar situations, given the momentum of the object and the 

mass of the maze itself which would prevent instantaneous changes in rotation. Another 

solution would be to rotate the Z axis upward (so that we would be looking down on the 

maze), giving us a flat surface on which to roll the object through the opening. This 

would require a much different solution methodology and control scheme than the one 
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developed for this thesis. One of the requirements for this system is therefore that the 

agent recognize when it is incapable of solving the maze that has been generated, so that 

it does not go into an endless loop of failed attempts. 

 

Problems similar to these, which make some mazes physically unsolvable, also preclude 

the use of AI search algorithms that rely on backtracking. The same situations that make 

the goal point unreachable could make any previous state unreachable as well.  

 

Non-Repeatable Moves 

 

The algorithms developed for this thesis are highly dependent on learning from past 

experience, and therefore repeatability is very important. When repeating the same action 

(move) from the same starting state, the agent should be able to expect the same results. 

In this manner, it is able to learn from experience, using past results as a basis for 

decision making. It may seem that repeatability could always be expected, given the same 

physical simulation of the same event, but this is not always the case. The simple two 

dimensional example in Figure 24 below shows why some results are not always 

repeatable.  In this example, the marble, traveling with a velocity indicated by the arrow, 

may fall toward cell 7 (to the left) or proceed to cell 12 (to the right) with nearly equal 

probability. The slightest round off errors, possibly caused by the residual effects of prior 

events, could result in the marble ending up in cell 12 some times and cell 7 other times. 

 
Figure 24: Unpredictable Results in 2-D 

 

7 12 
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The opportunities for non-repeatability are even greater when three dimensional mazes 

are modeled. Figure 25 shows why this is the case. Here we can see that the marble, 

which is rolling or sliding down the valley between walls 'A' and 'B', will reach a point 

where it will fall to either the right or the left with equal probability. There is no way to 

reliably predict which way it will turn, and past history will not be a good indicator of 

future results. 

 

 
 

Figure 25: Unpredictable Results in 3-D 
 

Frozen States 

 

Another difficulty described by Figure 25 is that the marble may not fall to either the 

right or left, but roll down the edge between walls 'C' and 'D', stopping when it reaches 

another wall (not shown) at point '2' and remaining balanced there.  This does not result 

in the marble resting in one of the states that we have defined. In fact, looking at the 

projection in Figure 26, it is clear that the marble rests partially in 3 different cells. This 

would be a nearly impossible condition if this were an actual maze with a human 

controller. It would require perfect balance and control. On a computer however, this can 

be easily simulated with the appropriate control scheme and choice of orientations, and in 

fact does occur fairly often with some of the algorithms developed for this thesis.  
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Figure 26: Marble Balanced in Frozen State 

 

In this thesis, this condition will be referred to as a ‘Frozen’ state, since the marble has 

come to rest in a state that is not well-defined for our purposes, and the physical solution 

can therefore not proceed. It should be understood that this does not represent any 

instability as far as the physics simulation is concerned. The maze could in fact be tipped 

to one side or another to cause the marble to fall, or even rotated carefully to get to roll 

back down the edge between walls 'C' and 'D' in the opposite direction from which it 

came.  

 

Fortunately, before assuming that the marble has settled in a well-defined state and 

updating the physical state graph accordingly, we can verify that it has indeed settled in 

an acceptable state. The way that this is done is to project the vector representing gravity 

onto the three axes. The possible alignments for the maze have been chosen such that the 

gravity vector will have a non-zero projection on each of the three axes. Since the cells of 

the maze are aligned with the axes, these projections represent directions in which there 

must be a wall blocking movement. We can check for the presence of the required walls, 

and if any are absent, we know that we are not in a well defined state. 

 

In the first few algorithms that are developed, those mazes in which a frozen state such as 

this occurs are treated as unsolvable. Later in this thesis, a method is discussed to nearly 

eliminate the possibility of this situation occurring. 



 29 

 4. Solution Algorithms 

 

In this section we describe six algorithms implemented to physically solve the puzzle, 

and discuss their performance. 

 

4.1 General Solution Methodology 

 

The algorithms developed for this thesis are all fundamentally based on analyzing a 

'physical state graph' that is built based on the physical states of the maze and marble, and 

the moves that transition the system from one to another. Figure 27 represents an 

example of a physical state graph after several moves have been made. The nodes 

represent states, which are combinations of the location of the marble and the orientation 

of the maze. The directed arcs correspond to the moves (rotations) of the maze that were 

made to transition from one state to the other. The nodes identified by a question mark 

indicate unknown states that can be reached by a single move from an already known 

state. Since these are moves that have not already been made, it is unknown whether 

these states represent states that have been previously visited, states that have not yet 

been discovered, or even states corresponding to the target cell.  

 

 
 

Figure 27: The Physical State Graph 
 
Implementing this graph to find the physical solution differs in several significant ways 

from most search algorithms typically utilized in artificial intelligence. 
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• Whenever the next move must be chosen, the agent does not have knowledge 

of the entire graph; only of the part that has been developed based on previous 

actions. It therefore cannot use a complete search algorithm to find a physical 

path leading to the target cell. 

 

• Search algorithms typically involve selecting a node to expand, and then 

evaluating all the children of that node. Different search algorithms use 

different criteria for determining the order in which to evaluate the child nodes 

[Russell and Norvig, 1995]. For this system, evaluating a child node involves 

making a physical move to the new state. Since backtracking is not feasible, 

once a child is chosen, the option to evaluate its siblings no longer exists. 

 

• There is nothing known about each unknown state. It is a function of the 

parent state, the geometry of the maze, and the physics involved, and can only 

be determined after the move is made. We therefore have no immediate way 

of determining which may be the best branch to take. 

 

Although physical backtracking is not considered possible, the system can search for the 

goal by choosing from the available branches off the current state. In general, a move to 

an unknown state will have one of 2 possible outcomes: it can lead to a previously 

undiscovered state, which will be added to the physical state graph, or it can lead to a 

state that has already been encountered, and is therefore already in the physical state 

graph. In the later case, the arc corresponding to the move that was made is connected to 

the node already representing that state. In this system, branches cannot lead back to the 

same state. Although after a move, the marble will often remain in the same location, but 

the orientation after the move, and therefore the state, will be different. Proceeding in this 

manner, the agent can 'explore' the maze, building a graph of the results as it proceeds.  

 

When searching this physical state graph for a desired state from the current state, 

backtracking back to the node representing the current state can be used. The reason is 

that this graph represents actions and resulting states that have already been discovered. 
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We can safely assume that the same actions taken from the same states will again lead to 

the results indicated in the graph (it turns out that this is not always the case, but the 

repeatability is reliable enough that we can base decisions on it with reasonable 

confidence). To help clarify this, assume that the right branch from state 47 in Figure 27 

is taken and found to lead back to state 0. If we now want to find a path back to state 46, 

we can use any traditional search algorithm employing backtracking (e.g., depth-first, 

breadth-first), to find the path (set of moves) 0--> 9 --> 46.  

 

We can implement a traditional search algorithm, much like the depth-first search 

algorithm used to find the 'theoretical solution' discussed earlier, since in this case we are 

not actually making any physical moves, simply evaluating paths that are already known. 

Once the search is complete, we can then perform the physical moves leading to the 

desired state found. In this manner, a 'theoretical' search algorithm is implemented to 

guide the decision-making for the 'physical' search.    

  

As part of this thesis, six algorithms were developed to find the physical solution to the 

puzzle. The algorithms differ in the level at which they incorporate additional knowledge 

of the maze geometry and physics. Essentially, they improve the performance of the 

agent solving the maze by improving its intelligence. 

 

The algorithms are listed here, and their description and performance is discussed in the 

following sections: 

 

• Blind Search Methods 

o Depth-First 

o Breadth-First 

• Informed Search Methods 

o Heuristic Search 

o Improved Heuristic Search 

o Single Move Prediction 

o Complete Solution Prediction 
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4.2 Blind Search Methods 

 

The first two algorithms developed to find a physical solution use no additional 

knowledge of the maze other than the physical state graph that has been developed based 

on moves already made. Search algorithms that employ no knowledge of the domain 

when choosing which path of a tree to expand are commonly referred to as 'blind' or 

'uninformed' searches [Russell and Norvig, 1995]. These methods can therefore be 

summarized as blind searches in a directed graph with no backtracking.  

 

Figure 27, discussed earlier, shows the physical state graph that describes the known 

states and the moves that have been shown to lead between them. At the time a move 

needs to be chosen, the graph only reflects what has already been discovered, so the agent 

cannot find the complete path to the target cell. The best it can do with no further 

knowledge is to find a path from its current state to one of the unknown states in the 

physical state graph. By such experimentation, the physical state graph is expanded until 

a state corresponding to the target cell is found. 

 

This exploratory methodology differs considerably from the way that search algorithms 

are generally employed. Whereas depth-first and breadth-first algorithms are generally 

used to find a desired state in known data, here they are being employed to intentionally 

find unknown states. 

 

The use of blind search algorithms in this way to find the physical solution to the maze is 

not likely to be efficient, but could be considered 'complete' under three conditions: 

 

• The algorithm is implemented in a manner that avoids loops. Figure 27 above 

shows that cycles can exist in the physical state graph, and these must be detected 

to avoid the possibility of infinitely long sequences of physical moves. 

 

• A solution must be possible given the control scheme (the physical moves made 

to the maze and the simulated results). It is possible that this methodology will not 
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be able to physically solve a maze that could be solved another way – perhaps 

using different orientations or a simulation that implemented a continuous control 

scheme rather than finite states. 

 

• No set of states are encountered that the control scheme is not capable of moving 

out of. For the same reasons that it may not be possible to reach a target state, the 

inability to physically backtrack means that the marble could end up in a set of 

cells from which it cannot escape. It is also possible that another algorithm, even 

with the same control scheme, could have avoided this 'hole' by choosing a 

different move at some point and found a path to the target state.    

 

If these conditions are met, the physical solution to the maze will be found. The system 

also detects when it cannot find a solution, since it is no longer able to find any unknown 

state from its current state when searching the physical state graph, implying that it has 

already been everywhere it is capable of going.  

 

The three conditions listed above are in fact not always met given the mazes that are 

generated for this thesis. For the results presented in this subsection, the cases that failed 

were simply discarded, and only the data for solvable mazes was used to measure the 

algorithm's performance. Later sections of this thesis cover methods to improve the 

reliability of the agent solving the maze. 

 

In Table 1 below, the performance results are summarized for the depth-first and breadth-

first algorithms finding a the physical solution by searching for unknown states in the 

physical state graph. For these test cases, 100 three-dimensional all- layer mazes 

measuring 3 cells on each side were used. The same mazes were used for the breadth-first 

and depth-first tests. The control scheme utilized 8 possible orientations, each 

corresponding to one corner of the maze being oriented upward. The choice of fairly 

small mazes was driven by the inefficiency of the blind search algorithms, and the 

extensive time therefore required to run all 100 cases (the depth-first cases took almost 10 

hours to run). 
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The measure of performance used here is the total number of physical moves of the maze 

that must be simulated, including repeated moves, to get the marble to the target cell. 

This is related to another aspect of this thesis that differs considerably from other 

applications of search algorithms. Here the time to perform the search of the physical 

state graph is not even considered to be important. The reason is that the size of the graph 

(for mazes that are small enough to perform a reasonable simulation) is very manageable, 

and the search algorithm is polynomial. Even the largest mazes tested had graphs with 

only a few thousand nodes. This means that a search of the graph using any reasonable 

algorithm can be performed in a fraction of a second on a modern personal computer, 

whereas the time required to simulate the move chosen can take several seconds. In fact, 

algorithms discussed later in this thesis which are designed to make better decisions on 

which physical moves to make actually spend a lot more time searching the physical state 

graph.   

 

100 3x3x3 All-Layer Mazes 
Average Length of Theoretical Solution  

from Starting Cell to Target Cell = 8.5 Cells 
Search 

Algorithm 
Employed 

Avg. 
Num. 
Moves 

%  
Frozen 

% 
Unsolvable 

Num. 
Repeated 
Moves 

Num. 
Unrepeatable 

Moves 
Depth-First 96.8 33 1 4013 17 

Breadth-First 52 11 2 610 4 
 

Table 1: Blind Search Results for 3x3x3 All-Layer Mazes Using 8 Orientations 
 
The data shows that even for small 3 dimensional mazes, this 'exploratory' method of 

finding a physical solution is very inefficient. The depth-first algorithm is particularly 

bad, requiring nearly twice as many physical moves to solve the maze. The reason can be 

seen in the physical state graph in Figure 28 and the corresponding tree in Figure 29 

representing the paths followed by the blind search algorithms (for simplicity, the 

example shown has a branching factor of 2, such as would be employed for a two-

dimensional maze, but the principle is the same for the three dimensional test cases used).  
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If the current state is 0 (the root of the tree), and the agent is searching for an unknown 

state to 'explore', a simple depth-first search expanding the left branches first would find 

the path 0 > 3 > 2> 9 > ?. The path would require 4 physical moves to reach the unknown 

state. The breadth-first search algorithm will find the unknown state that is the fewest 

moves away, in this case 0 > 3 > ?. In this way, the breadth-first algorithm expands its 

knowledge of the maze (by building the physical state graph) much more quickly, thus 

finding the target cell with fewer moves.  

   

              
 

    Figure 28: Physical State Graph                                   Figure 29: Corresponding Search Tree  
 

When observing the animation of the solution using these algorithms, it can be seen that 

the use of the breadth-first algorithm results in fewer repeated or seemingly senseless 

moves. Although fewer paths are re-traced, the breadth-first algorithm still appears to be 

making many un-intelligent moves. For instance, it will often move the marble from one 

corner of a cell to another, and then roll it right back. From the point of view of an 

intelligent observer, this appears to make no sense. This does however make sense to an 

agent that has no knowledge of the geometry of the maze. It may have  learned from 

experience that a given move from state ‘A’ results in state ‘B’ with the marble located in 

the same cell, but since the physical state graph is directed, it cannot predict the inverse 

move will change the state from ‘B’ back to ‘A’. In fact, with this algorithm, it has no 

way to even determine what the ‘inverse move’ would be. 
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The test results in Table 1 also show the number of repeated moves and the number of 

unrepeatable moves. The number of repeated moves is the number of physical moves that 

have to be made more than once during the entire simulation. These repeated moves 

correspond to arcs that already connect two states in the physical state graph, and 

therefore do not lead to any increased knowledge of the maze. Obviously, for an 

algorithm such as this, these moves are undesirable.  

 

In addition to the performance penalty, the other disadvantage to repeating the same 

move is that it may not always result in the same state. These 'unrepeatable' moves do not 

necessarily cause the algorithm to fail. It will simply update the physical state graph with 

the latest results for the move and continue searching for unknown states. This does 

however severely impact performance by effectively nullifying knowledge that has 

already been developed. Fortunately, the repeatability is over 99%, but increasing the 

number of repeated moves, as the depth-first algorithm does, is going to increase the 

number of unrepeated moves proportionately. 

 

Table 1 also reflects the danger of implementing an inefficient algorithm that results in an 

excessive number of moves. As explained previously, the control scheme used here, with 

8 orientations, makes it possible for the marble to come to rest balancing on an edge of 

the maze, in an undefined ‘frozen’ state. For these algorithms, continuing from a frozen 

state is not feasible, and the test case therefore must be terminated. Later, a methodology 

for eliminating this possibility is developed, but for the results shown above, these frozen 

test cases were treated as unsolvable, and not factored into the performance statistics.  

 

As we can see from Table 1, the number of moves required by the depth-first search 

significantly increases the chances of encountering a 'frozen' state. It resulted in the 

failure of 33 test cases, even thought the breadth-first algorithm was able to solve 21 of 

those same mazes. In fact, only 2 of the 100 mazes were determined using either 

algorithm to be physically unsolvable, meaning that the agent moved the marble to every 

state it was physically able to, without ever reaching the target cell. 
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4.3 Heuristic Search 

 

In order to find a more efficient physical solution to the maze, knowledge of the maze 

itself can be utilized to evaluate the possible unknown states that can be investigated. 

Heuristic searches [Russell and Norvig, 1995] employ heuristic functions to improve the 

efficiency of the search. At every step, they make a decision about which node or state to 

be expanded next based on the heuristic estimation of how likely it is that that state will 

lead to the solution faster. Unfortunately, due to the random nature of the maze, simple 

heuristics such as the Manhattan distance have been shown to be very misleading, and 

therefore not of much value [Sven Koenig 2004]. This algorithm uses the length of the 

theoretical path from the marble's location to the target cell as a heuristic to decide which 

unknown state to explore next. 

 

Unlike the Manhattan distance, the theoretical solution path from a given cell to the target 

cell does take into account the actual physical nature of the maze, and therefore the length 

of the theoretical path has the potential to serve as a reasonable heuristic. The method by 

which the maze is generated (as a spanning tree) guarantees that there is a unique 

theoretical path from each cell to the target cell. The path itself is found using a depth-

first search of the theoretical solution tree, as discussed previously in Section 3.3 

'Analysis of the Theoretical Solution'. Since that theoretical path can be quickly 

determined for each unknown state (given the reasonably small size of the theoretical 

graph), it is reasonable to use this to evaluate the unknown states that are available. 

 

This heuristic search algorithm involves searching the physical state graph to find all the 

unknown states that are reachable from the current state, and are within one move from a 

known state. These are evaluated based on a heuristic value equal to the length of the 

theoretical path (the length being defined as the number of maze cells along the path) 

connecting the known parent state to the target cell. We cannot actually evaluate the 

unknown state itself, since nothing is known about it (the move to the unknown state 

could result in the marble resting in the same cell, or many cells away). We can however 

use the hypothesis that there is a reasonable correlation between the desirability of this 
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unknown state and the heuristic value of its parent state. In other words, the agent will act 

on the assumption that if a state is close to the goal, a single move from that state is likely 

to get the marble close to the goal.  

 

The algorithm can be summarized as follows:  

 

1. For each unknown state in the physical state graph: 

1.1. Find a path from the marble’s current state to the node corresponding to the 

unknown state using the same breadth-first search implemented in the previous 

solution algorithm. 

1.2. Determine the known parent cell for that unknown state 

1.3. Set the heuristic value equal to the theoretical path length from the known parent 

cell to the target cell. 

1.4. If this heuristic value is better than the heuristic value for any other unknown 

state previously evaluated, designate this as the ‘best unknown state’ and store 

the path leading to it. 

2. Perform the physical moves corresponding to the path to the ‘best unknown state’. 

 

This algorithm is very similar to the ‘Best-First-Search’ algorithm defined on page 93 of 

Artificial Intelligence [Russell and Norvig, 1995], with the theoretical path length serving 

as the evaluation function ‘Eval-Fn’. Unlike the general ‘Best-First-Search’ algorithm 

however, the physical constraints in this system mean that only one branch of the tree can 

be expanded, i.e. physically simulated. Many of the known states in the physical state 

graph have multiple unknown children. Since it is the theoretical path from the parent's 

cell to the goal that is used as a heuristic, each of the children will be given the same 

value.  

 

Since we can only evaluate one of the children (physical moves are not reversible) we 

must choose between them. For the algorithm in this section, the choice is made 

arbitrarily (the first child found ends up being selected). This arbitrary decision is 

reasonable. If a bad choice is made, the same child state will not be chosen again 
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(assuming that the marble finds its way back to the parent state) since that child is no 

longer an unknown state. The next algorithm in this thesis discusses a more intelligent 

way to chose between the unknown child states. 

 

To find the unknown states to be evaluated, the physical state graph must be searched, 

starting in the current state. For this algorithm, a breadth-first search is implemented to 

find each unknown state. This will necessarily find the path with the fewest physical 

moves to reach the unknown state that is chosen to be investigated. The agent's 

performance will be improved by minimizing the number of repeated moves, and 

reliability will also be improved by reducing the number of opportunities for non-

repeatable moves or frozen states. 

 

There is one major difference between this and many other artificial intelligence search 

algorithms. Here the objective is definitely not to reduce the time searching for a node in 

the graph. In fact, the time spent on searching is being dramatically increased. In the 

blind search algorithms discussed previously, we were searching for a single unknown 

state in the physical state graph to be investigated. With this algorithm, all the unknown 

states must be searched for. Then, for each of those unknown states, a complete depth-

first search of the theoretical graph must be performed to determine the value of the 

heuristic. The number of repeated searches can be reduced by calculating and storing the 

heuristic value for each state when it is first encountered, but all of the unknown states 

will still have to be found at each decision point. 

 

The reason the increased time for searching is justified is that the time cost of searching 

the physical state and theoretical graphs with any reasonably efficient algorithm is orders 

of magnitude less than the cost of actually simulating the moves. It is therefore worth the 

extra time to do additional searching to minimize the number of physical moves that must 

be simulated. In addition to saving time, reducing the number of physical moves to be 

simulated also improves reliability as discussed earlier. 
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Table 2 below summarizes the results of testing this heuristic search on the same 100 

3x3x3 all- layer mazes used to test the blind search algorithms.   

 
100 3x3x3 All-Layer Mazes 

Average Length of Theoretical Solution  
from Starting Cell to Target Cell = 8.5 Cells 

Search 
Algorithm 
Employed 

Avg. 
Num. 
Moves 

%  
Frozen 

% 
Unsolvable 

Num. 
Repeated 
Moves 

Num. 
Unrepeatable 

Moves 
Depth-First 96.8 33 1 4013 17 

Breadth-First 52 11 2 610 4 
Heuristic 31.5 9 2 509 5 

 
Table 2: Heuristic Search Results for 3x3x3 All-Layer Mazes Using 8 Orientations 

 

The data shows that the use of a heuristic to estimate the desirability of an unknown state 

can significantly improve the performance of the physical search. The use of the 

theoretical path length as a heuristic is effective, even when basing it on the parent state. 

The number of moves required to physically solve a maze, was reduced significantly, 

showing that there is indeed a positive relationship between the distance from the parent 

state to the target, and the distance from the child state to the target. The next algorithm 

presented provides a method for evaluating the desirability of the unknown states 

themselves.  
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4.4 Improved Heuristic Search 

 

In the previous heuristic algorithm, it was assumed that nothing was known about each 

unknown state in the physical state graph, and its desirability could therefore not be 

determined by evaluating it directly. The theoretical distance from the parent state's cell 

to the target cell was therefore used as a heuristic for each of the parent states unknown 

children. In this section, a method is developed to calculate a heuristic for the unknown 

(child) states themselves. It does this by utilizing knowledge of the maze geometry, the 

nature of the moves that can be made from a given state, and the physics involved. 

 

The choice of possible orientations for the maze (which consists of one corner or vertex 

of the maze pointing directly upward) enables the algorithm to determine with certainty 

the cell of the maze that the marble will move to next in response to a specific move. For 

the two dimensional case, it is easy to see that a rotation of the maze will result in the 

marble rolling away from the corner it is currently resting in, and either being stopped in 

the current cell by another wall or entering the adjacent cell. The direction of travel, and 

therefore which adjacent cell will be entered, can be determined by projecting the vector 

representing gravity onto the two axes. One of these projections will be in the direction of 

a wall that the marble is resting on, and the other will represent the direction of travel. 

 

For the three dimensional case, the nature of the geometry and the possible orientations 

guarantees that any time the system is stable, the marble will be resting in a corner where 

three mutually perpendicular walls intersect. We can picture the vector representing 

gravity pointing from the center of the maze cell where the marble is located to the corner 

where the marble is resting. In the next orientation, after any move, the gravity vector 

will point from the center of the cell to one of the adjacent corners. This new ‘downward’ 

corner will necessarily have two walls in common with the original orientation, and 

movement in those directions will therefore not be possible. The only possible movement 

will be in the direction of the new third wall, which can be present or absent in the maze. 

If the wall is present, the location of the marble in the new orientation will be the same as 

the old (it will simply roll to and stop in a new corner of the same cell). If the new wall in 
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the new orientation has been removed (as part of the maze generation), the next location 

of the marble will be in the cell corresponding to the other side of that missing wall.  

 

Figures 30 and 31 illustrate this. In Figure 30, we can see that the marble is initially at 

rest at the intersection of walls 1 (bottom left), 2 (front), and 3 (bottom right). After a 

rotation to an adjacent vertex of the cube, Figure 31 shows that the marble will roll down 

the edge between walls 2 and 3. Walls 2 and 3 will still be preventing any movement in 

those directions, so the only possible progress will be in the direction of wall 4. If wall 4 

is present, the marble will come to rest in the new corner. Otherwise it will continue to 

the cell on the other side of wall 4. 

        
 
         Figure 30: Marble Resting Before Rotation                       Figure 31: After Rotation        
 

It is important to understand that if the marble does relocate to a new location as the 

result of a move, this adjacent location is not necessarily the location it will end up in. It 

may very well be the first of many locations that will be ‘visited’ while the marble rolls 

or falls through the maze in response to gravity and collisions with other walls. However, 

we are now assuming that the entire path that the marble will take is too complex to 

determine without simulation, so the next adjacent cell is the best estimate for the 

unknown state occurring after the move and will be used as a basis for the desirability of 

the move being evaluated.  

 

Using this next adjacent cell as an estimate of the cell corresponding to the unknown 

state, we can use the length of the theoretical path from that cell to the target cell as a 

1 3 
2 2 

3 4 
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heuristic to determine how desirable the unknown state is. As with the previous solution 

algorithm, the theoretical path length to the target cell is determined using a depth-first 

search of the theoretical solution tree. In this case however, it is the length of the 

theoretical path from the adjacent cell (which is itself an estimate of the cell 

corresponding to the unknown state) to the target cell that will be used. In this way, the 

algorithm will estimate the desirability of each unknown state, which will also enable it 

to choose between multiple unknown states with the same parent. 

 

This 'Improved Heuristic Search' algorithm can be summarized as follows:  

 

1. For each unknown state in the physical state graph: 

1.1. Find a path from the marble’s current state to the node corresponding to the 

unknown state using a breadth-first search. 

1.2. Determine the known parent cell for that unknown state. 

1.3. Determine the next adjacent cell that the marble will occupy as a result of the 

move corresponding to the branch from the parent state to the unknown state. 

1.4. Set the heuristic value equal to the theoretical path length from this next adjacent 

cell to the target cell. 

1.5. If this heuristic value is better than the heuristic value for any other unknown 

state previously evaluated, designate this as the ‘best unknown state’ and store 

the path leading to it. 

2. Perform the physical moves corresponding to the path to the ‘best unknown state’. 

 

In Table 3 below, the performance results are summarized for the simple heuristic 

algorithm and this 'improved' heuristic algorithm. Due to the improved performance of 

these informed searches over the blind searches tested earlier, more complex mazes can 

be used. For these test cases, 100 three-dimensional outer- layer mazes measuring 5 cells 

on each side were used. The same mazes were used for both algorithms. Again, the 

control scheme utilized 8 possible orientations, each corresponding to one corner of the 

maze being oriented upward.  
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100 5x5x5 Outer-Layer Mazes 
Average Length of Theoretical Solution  

from Starting Cell to Target Cell = 18.4 Cells 
Search 

Algorithm 
Employed 

Avg. 
Num. 
Moves 

%  
Frozen 

% 
Unsolvable 

Num. 
Repeated 
Moves 

Num. 
Unrepeatable 

Moves 
Simple 

Heuristic 74.3 30 9 1037 41 

Improved 
Heuristic 

20.3 26 10 221 7 

 
Table 3: Heuristic Search Algorithm Comparison for 5x5x5 Outer-Layer Mazes with 8 Orientations 

 

As we can see, incorporating knowledge of the next cell that will be visited as a result of 

a given move dramatically improved the performance of the algorithm. The average 

number of moves required to solve the maze was less than a third of the number required 

using the simpler heuristic. The number of repeated moves was reduced to less than a 

forth the number previously required. 

 

At first it seems surprising that simply knowing the next cell that the marble will occupy, 

with no knowledge of where it will eventually stop, could improve performance this 

much. Perhaps a more intuitive explanation for this improvement comes from realizing 

that the next adjacent cell visited not only gives a (possibly temporary) location for the 

marble, but a direction as well.  

 

This heuristic algorithm also improves the performance of the agent over the blind search 

algorithms in another more subtle way as well. Recall that the blind search methods 

evaluated earlier expand the agent's knowledge by finding and exploring unknown states 

in the physical state graph. Remember that a ‘state’ in this system is a combination of the 

marble’s location and orientation. As previously explained, it is necessary to distinguish 

between states where the location is the same but the orientation is different, since the 

results of a given move will be different if performed from a different orientation.  

 

When searching for the goal by expanding our knowledge of the maze, however, we 

would intuitively want to explore as many new cells as possible. We would therefore 
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want to give priority to a state corresponding to a new cell over a state corresponding to 

the same cell in a different orientation. The heuristic employed in this algorithm is a 

measurement of the desirability of the state's cell (the marble location), and will therefore 

favor moves that physically relocate the marble closer to the target cell. 
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4.5 Single Move Prediction Search: 

 

The next algorithm developed to improve the ‘physical search’ for the maze solution 

involves predicting the path followed by the marble in response to a move. Using the last 

algorithm discussed, the agent was able to improve its performance over a simple 

heuristic search by determining which adjacent cell the marble would pass through or 

come to rest in after a move. That cell can be conclusively determined due to the nature 

of the geometry, but we cannot be sure where the marble will travel after that next cell. 

We can however make a prediction of the entire path that the marble will travel, and use 

the theoretical distance from the predicted end cell to the target cell as a heuristic to judge 

the value of that move. This prediction will be made for every reachable unknown state in 

the physical state graph, and the move believed to be the best will be pursued. As with 

the previous method, a breadth-first algorithm is employed to find the shortest path (the 

fewest physical moves) to reach each unknown state. 

 

To make the prediction of the entire path that will be followed by the marble from a 

given state in response to a specific move (rotation to another orientation), a recursive 

algorithm was developed. For simplicity, the algorithm is described here as it applies to 

two dimensional mazes, with the required adjustments for three dimensional mazes 

discussed later. 

 

As discussed previously, we can determine the first adjacent cell that the marble will 

move to in response to a given move. From this cell one of two events can occur. The 

marble can continue moving in the direction of its current velocity, referred to here as the 

'velocity-dominate' direction, or it can fall in the other ‘gravity-dominate’ direction. The 

vector representing the direction of gravity after the next move is projected onto the axes 

of the maze's coordinated system, and the component that is parallel to the velocity vector 

is eliminated to determine the gravity-dominate direction. We can then query the 

geometry of the maze to determine if movement in either or both of the velocity-

dominate and gravity-dominate directions is possible, given the walls that are either 

present or absent. 
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If movement is not possible in either direction, we can safely assume that the marble will 

come to rest in this cell. If movement in only one of the two directions is possible, we 

will assume that it will travel in that direction. If however, movement in both directions is 

possible, we will use an estimate of the marble’s speed to determine which direction will 

be taken. If the estimated speed of the marble is above a specified threshold value, we 

will assume that the marble will continue in the velocity-dominate direction. If the speed 

is below that threshold, we will assume that the marble will ‘fall’ in the gravity-dominate 

direction. Intuitively, we would expect this to make sense. The faster the marble is 

traveling, the more likely it is that it would pass over ‘holes’ without falling in. 

 

After determining which cell the marble will move to next, we adjust the speed and 

direction of the marble and apply the procedure recursively until we reach a cell where no 

further progress is possible, which is the predicted final location for the marble in 

response to the move. At each step of the algorithm, the new direction is simply a vector 

connecting the current cell to the next predicted cell. The predicted speed is adjusted as 

follows: if the direction of the marble has changed (from the velocity-dominate to 

gravity-dominate direction, the speed is reset to zero, assuming that a collision with a 

wall has probably occurred impeding the forward progress. If however the marble 

continues in the velocity-dominate direction, the predicted speed is increased by an 

amount proportional to the magnitude of the projection of the gravity vector onto the 

velocity vector. This will increase the speed more when it is rolling down steeper hills. 

This new speed is then used in the next iteration of the algorithm (for the next cell), being 

compared to the set threshold value to determine how likely it is that the marble will 

continue in the velocity-dominate direction.  

 

This recursive path prediction method can be summarized as follows: 
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getPredictedPath(Cell, Speed, Velocity Vector, Orientation, Path): 

 

1. Determine the gravity-dominate and velocity-dominate directions based on the 

Orientation and Velocity Vector. 

2. If movement in only one of these directions is possible,  

2.1. Add the next Cell in that direction to the Path 

2.2. Adjust the Velocity Vector to point in the direction of the next Cell  

2.3. Increase the 'Speed' if the 'Velocity Vector' did not change 

2.4. call  getPredictedPath() with the new Cell, Speed, and Velocity Vector to add any 

further progress to the Path 

3. If movement in both directions is possible 

3.1. Compare the speed against the threshold value 

3.1.1. if Speed >= threshold value, the next Cell will be in the velocity-dominate 

direction 

3.1.2. if Speed < threshold value, the next Cell will be in the gravity-dominate 

direction 

3.2. Adjust the Velocity Vector to point in the direction of the next Cell  

3.3. Increase the Speed if the Velocity Vector did not change 

3.4. call  getPredictedPath() with the new Cell, Speed, and Velocity Vector to add any 

further progress to the Path 

4. If movement in neither the gravity-dominate or velocity-dominate directions is 

possible, return the predicted path and final location (cell) of marble. 

 

The amount by which the speed is increased in this method when the velocity vector 

remains the same is essentially arbitrary when the walls are all at the same angle with 

respect to gravity, as is the case for the test cases discusses so far in this thesis. Instead of 

using the projection of the gravity vector onto the velocity vector, we could simply 

increase the speed by a set amount, and adjust the threshold value (used to determine if 

the velocity-dominate direction is chosen) to a value that works most of the time. For 

later tests however, alignments are chosen such that the walls are not all at the same 
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angle, and thus we must account for the ‘steepness’ of the walls involved. The projection 

of the gravity vector onto the velocity vector is straightforward to compute and handles 

all cases. 

 

 

Figures 32 and 33 are used to illustrate how this algorithm works in the two-dimensional 

case.  

                       
 

Figure 32: Initial State                                                        Figure 33: Predicted Path 
 

The marble is initially at rest in position 1 as shown in Figure 32. The move resulting in 

the orientation shown in Figure 33 initially causes the marble to move to position 2. At 

this time, the speed is not sufficient to continue moving in the velocity dominate 

direction, so the marble ‘falls’ in the gravity-dominate direction to position 3. Movement 

from position 3 in the new velocity-dominate direction is blocked by a wall, so the 

marble moves in the gravity-dominate direction to position 4. From position 4, the marble 

can only continue its current velocity-dominate direction to position 5, increasing its 

speed as it does so. From position 5, the speed of the marble is sufficient (above the 

threshold value) to continue in the velocity-dominate direction to position 6. At position 

6, the marble will come to rest in a well defined state, since further progress is not 

possible in either the velocity or gravity-dominate directions. 

 

1 
2 

3 
4 

5 
6 

1 
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Figure 34 below shows the path followed in the actual simulation of the example used in 

Section 3.4 'Analysis of the Physical Solution'. It can be easily seen that a collision 

occurred at most locations where the marble's path changed. Looking at the path that is 

followed when one of these collisions occurs, we can see that the marble changes 

directions. Intuitively, we can assume that the marble's speed would be reduced when one 

of these collisions and resulting change of direction occurs. The getPredictedPath() path 

prediction method (which was able to predict this entire solution accurately) simplifies 

the response to these collisions by merely changing the velocity vector to point to the 

next cell and re-setting the speed to zero. 

 

 

 
 

Figure 34: Example of Simulated Solution Path 
 

The three-dimensional case is similar, with the added complexity of three possible 

directions of movement at each step, as determined by the projection of the gravity vector 

onto the three axes. One of these vectors will be the velocity-dominate direction, and the 

two others will be gravity-dominate. There is one particularly interesting scenario in the 

three-dimensional case. This occurs when it is determined that progress in the velocity-

dominate direction is not the predicted outcome, and movement in both gravity-dominate 

directions is possible and each is determined to be equally likely. This is the case that is 

pictured in Figure 25 in Section 3.6 'Additional Challenges'. For now, one of the gravity-
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dominate directions is chosen arbitrarily, but later in this thesis a method for avoiding this 

problem is developed. 

 

 Notice that this algorithm is designed to provide an extremely fast (instantaneous for the 

purposes of this system) prediction of the response of the marble to a given move, 

without having to rely on simulation. As such, it does not attempt to model the physics 

with a high degree of accuracy. As stated earlier, one of the premises on which this thesis 

is based is that we cannot be certain of the results of a move until the move is ‘physically’ 

carried out (simulated). This predictive algorithm does however involve (on an extremely 

simplified level) some of the fundamental components of a physics simulation. Collision 

detection takes the form of determining which directions of movement are possible, given 

the walls that are present. The collision response is simplified into modifying the speed 

and direction of travel. Acceleration due to the force of gravity is also estimated when 

adjusting the speed at each step. 

 

The similarity to a physics simulation is not however to simulate reality, but is merely the 

result of attempting to make the prediction feasible. The primary purpose is to quickly 

provide a prediction of the state resulting from a move, in the hope that it will be close 

enough to serve as a reasonable basis for the decision making. This extreme 

simplification of reality is in fact shown to be over 97% accurate in the test cases used for 

this thesis. Naturally, more realism could be incorporated into the prediction, but at some 

point it would become too complex to provide the 'instantaneous' predictions that are 

desirable for this algorithm. Consideration must also be given to the fact that the 

simulation itself is not always repeatable, and therefore no prediction algorithm can be 

guaranteed to be 100% accurate. 

 

It is interesting that the objective of this algorithm is essentially to provide the intelligent 

agent with the ability to ‘guess’ what the outcome of a move will be before making it. 

This is similar to the process a human agent would use: evaluating his or her options by 

predicting what the outcomes are likely to be. 
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After the recursive path prediction method is used to estimate the cell corresponding to an 

unknown state in the physical state graph, the length of the theoretical path from that cell 

to the target cell is used as a heuristic to determine the desirability of the unknown state.  

 

This 'Single Move Prediction Search' algorithm, which incorporates this recursive path 

prediction methodology, can be summarized as follows: 

 

1. For each unknown state in the physical state graph: 

1.1. Find a path from the marble’s current state to the node corresponding to the 

unknown state using a breadth-first search. 

1.2. Determine the move corresponding to the branch from the parent state to the 

unknown state. 

1.3. Use the recursive path prediction algorithm discussed previously to estimate the 

cell the marble will occupy as a result of the move to this unknown state. 

1.4. Set the heuristic value equal to the theoretical path length from this predicted cell 

to the target cell. 

1.5. If this heuristic value is better than the heuristic value for any other unknown 

state previously evaluated, designate this as the ‘best unknown state’ and store 

the path leading to it. 

2. Perform the physical moves corresponding to the path to the ‘best unknown state’. 

 

In Table 4 below, the performance of the Single Move Prediction algorithm is compared 

to the results of the previous heuristic algorithms. The same 100 5x5x5 outer- layer mazes 

were used for the testing, with a control scheme utilizing the same 8 orientations.  
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100 5x5x5 Outer-Layer Mazes 
Average Length of Theoretical Solution  

from Starting Cell to Target Cell = 18.4 Cells 
Search 

Algorithm 
Employed 

Avg. 
Num. 
Moves 

%  
Frozen 

% 
Unsolvable 

Num. 
Repeated 
Moves 

Num. 
Unrepeatable 

Moves 
Simple 

Heuristic 
74.3 30 9 1037 41 

Improved 
Heuristic 20.3 26 10 221 7 

Single Move  
Prediction 

18.6 27 11 117 0 

 
Table 4: Single Move Prediction Results for 5x5x5 Outer-Layer Mazes Using 8 Orientations 

 

The data in Table 4 shows that there is a slight improvement over the 'Improved 

Heuristic' covered in the previous section, but perhaps not as significant as we would 

expect. One possible explanation for this lack of improvement is that the path prediction 

is not accurate enough. The data generated for these test cases shows however that 97.7% 

of the 1152 moves that were required to solve the 62 solvable mazes were predicted 

accurately. It is reasonable however to assume that any prediction error could result in the 

marble deviating far from the intended state, and that such an error could be difficult to 

recover from. It is also obvious that given the large number of moves required to run all 

cases, even with a prediction algorithm that is nearly 98% accurate, several of the test 

cases will be affected by prediction errors. The prediction errors that did occur affected 

only 20 of the mazes solved. The average number of moves required to solve the 42 

mazes that did not incur prediction errors was only 14.5 moves.  



 54 

4.6 Complete Solution Prediction Search 

 

In the 'improved heuristic' algorithm, a computationally efficient method was developed 

to determine the next cell that the marble will enter in response to a move of the maze. 

The ‘single move prediction’ algorithm was able to determine a more optimal physical 

solution by extending this prediction to estimate the entire path that the marble will travel 

as part of the next move. The algorithm described in this section attempts to improve the 

performance of the agent solving this puzzle by predicting a complete physical solution 

path to the target cell. 

 

One method for determining the complete path that would be followed by the marble is to 

actually run the simulation in the background before each move is made, without 

changing the actual state of the system until the results of the simulation are complete, 

and we’ve decided to accept the results. This would turn the problem into a more 

traditional artificial intelligence search problem. The ability to effectively backtrack 

(since no physical move is actually being made) would enable us to expand branches of 

the search tree as desired, and prioritize the resulting nodes using one of the more 

common search algorithms.  

 

In effect, this methodology would be the equivalent to the depth-first search algorithm 

used to determine the theoretical solution to the maze. For that solution, a ‘behind the 

scenes’ depth-first search was employed to find the path, with the assumption that at each 

node, any direction could be followed that does not penetrate any walls. Here, any 

common search algorithm could be used to find the physical solution, with the 

assumption that at each node, the direction indicated by the simulation would be 

followed. 

 

This methodology is not entirely impractical. With the proper configuration of the 

Newton physics simulation, and without slowing the system down to update the graphics, 

we can run the simulation faster than real-time. However, it would still not be nearly fast 

enough to provide seemingly ‘instantaneous’ decisions, especially when we consider that 
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it would involve simulating numerous moves,  many if not most of which would not be 

on the path to the solution, to search the state space for the solution.  

 

This may be a more practical solution in the future, as computing power continues to 

grow exponentially and enables the entire simulation to be performed quickly enough. It 

is also possible that new advances in computer hardware, especially physics co-

processors, will do for simulation what GPUs have done for graphics, and make behind-

the-scenes simulations like this one a potential component of AI algorithms. This 

however is not the focus of the algorithms developed for this thesis. Here the simulation 

is being treated as a real-time representation of an actual physical domain, and the 

intelligent agent developed must deal with it as if it were reality.  

 

The ‘Complete Solution Prediction' algorithm developed here is based on repeated use of 

the 'Single Move Prediction' algorithm covered in the previous section. That method is 

applied to predict the resultant state of each potential move. Each prediction is assumed 

to be correct, and a new prediction can be made for each potential move from the new 

state. Since all possible moves can be analyzed, and  backtracking can be employed (since 

no actual physical moves are being performed), a traditional search algorithm can be 

employed to find a sequence of moves that should lead all the way to the target cell.  

 

This method works by building and searching a different graph, the 'Predicted State 

Graph' for a state corresponding to the target cell. The theory behind this method is 

nearly identical to the Blind Search Algorithms employed on the physical state graph. 

The predicted state graph has the same form and properties as the physical state graph. 

The only difference is that the Complete Solution Prediction algorithm expands the graph 

with the predicted results for potential moves, rather than the results of simulating the 

physical moves. This algorithm can therefore build and search the entire graph, 

employing backtracking as required, until an entire path to the goal is found. 

 

Essentially, this algorithm is doing the same thing as the background simulation theorized 

above. This method is more practical however, because unlike a complete off- line 
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simulation, the Complete Solution Prediction algorithm is fast enough that it can be 

applied numerous times to develop a complete solution before a single move is decided 

upon. 

 

The search algorithm employed to search the predicted state graph for a solution is the 

breadth-first search, again modified to eliminate cycles (which will appear in the 

predicted state graph, just as they do in the physical state graph). The breadth-first search 

will find a predicted path with the fewest possible number of physical moves. This is 

important, not only because it will improve the performance of our agent, but because it 

will improve reliability as well. Since each move is based on predicted results, each is 

subject to inaccuracies in the prediction algorithm. Minimizing the number of moves 

required will reduce the chances of the marble deviating from the predicted path. 

 

This is actually the first of the algorithms developed for this thesis that attempts to find an 

optimal physical solution. If the results of every possible move are predicted accurately, 

and the path with the fewest number of moves is chosen, this should result in the optimal 

path being followed. It turns out that complete optimality is not possible (discussed 

below), but the accuracy should be good enough to improve performance.  

 

Unlike the previous algorithms developed, which are based on finding and ‘exploring’ 

states that were previously unknown in the physical state graph, this algorithm is based 

on predicting and following a complete path from the marble’s current location to the 

target cell. This fundamental difference has three significant implications that must be 

dealt with in the implementation.  

 

1. The algorithm may not be able to find a complete solution to a target state.  

 

For the cases in which a predicted path leading from the current state to a target 

state cannot be found, there are two choices: the maze can be dismissed as 

unsolvable, or we can employ a different algorithm to search for the target. 

Although the Single Move Prediction algorithm developed for this thesis has 



 57 

proven to be over 97% accurate when applied to the test cases used, there is still 

the possibility of prediction errors occurring. The number of moves required to 

find a complete path to the solution increases the chances of an error occurring. 

This can and does result in predicted solutions not being found for many mazes 

that are in fact solvable.  

 

The solution implemented in this system is to utilize the Single Move Prediction 

algorithm to find and explore the best unknown state in the Physical State graph 

whenever a complete solution cannot be found in the predicted state graph. For 

this reason and others (discussed below) the physical state graph is built and 

maintained with the results of the simulated moves, just as it is with the previous 

algorithms. After making any move based on the single move prediction, the 

agent will always attempt to find a complete predicted path to the solution before 

resorting to the single move prediction algorithm again.  

 

2. The algorithm finds a predicted solution that has inaccuracies, and therefore does 

not lead to the target.  

 

Each move in the predicted solution path has the possibility of leading to an 

unpredicted state. After such a deviation, it is unlikely that the subsequent 

predicted moves will lead to the target. The way this is dealt with is for the agent 

to search for a new complete path to the solution whenever it deviates from the 

predicted path. If a complete predicted path from the new state cannot be found, 

the agent will use the single move prediction algorithm as described above. 

 

3. The predicted path leads back to the current state or a previous state. 

 

If an error in a prediction results in the system returning to a previous state, the 

same predictions will be made again, most likely ending up with the same results. 

This would create an infinite loop in the physical simulation. The solution is to 

build and maintain the physical state graph with the results from the simulated 
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moves. Whenever the results of a move are to be predicted, the physical state 

graph is checked first and the previous results of the move are used if available. In 

this way, the agent effectively learns from its mistakes and past experience.  

 

In Table 5 below, the performance results are summarized for the Single Move Prediction 

and Complete Solution Prediction algorithms. For these test cases, the same 100 5x5x5 

outer- layer mazes were used to test both algorithms. The control scheme was the same as 

well, utilizing 8 possible orientations, each corresponding to one corner of the maze 

being oriented upward.  

 

 
100 5x5x5 Outer-Layer Mazes 

Average Length of Theoretical Solution  
from Starting Cell to Target Cell = 18.4 Cells 

Search 
Algorithm 
Employed 

Avg. 
Num. 
Moves 

%  
Frozen 

% 
Unsolvable 

Num. 
Repeated 
Moves 

Num. 
Unrepeatable 

Moves 
Single Move   
Prediction 18.6 27 11 117 0 

Complete 
Solution 

Prediction 
21 25 7 236 6 

 
Table 5: Comparison of Prediction-Based Algorithms for 5x5x5 Outer-Layer Mazes with 8 Orientations 

 

Here we see that the result of attempting to predict an entire path to the target cell is to 

actually diminish performance (though not significantly). There are two primary effects 

that contribute to the lack of improvement. Firstly, the number of predicted paths which 

are part of the complete solution increases the odds of an inaccurate prediction being 

made. This has the effect of reducing the algorithm to multiple single move predictions. 

Secondly, for many of the mazes, a complete predicted solution from the start state to the 

goal state could not be found, so much of the physical solution was actually found using 

the single move prediction algorithm.  

 

For the 39 mazes in which complete paths to the target cell were successfully predicted, 

the average number of moves was only 8.9. It is tempting to assume that an optimal 
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solution for these mazes (given this control scheme) was indeed found, since the 

algorithm found the fewest number of predicted moves to reach the target cell, and all of 

the predictions were correct. This however is not necessarily the case, since there is 

always the possibility that another path, which was predicted incorrectly by this 

algorithm, could have led to the target with fewer moves.  

 

The above argument has some interesting implications. Since the simulation of this 

problem is not always repeatable, no path prediction can be guaranteed to be 100% 

accurate. By this argument, no predictive algorithm can be guaranteed to find the optimal 

physical solution. In essence, unlike the search of a graph of known states, the 

dependence of the physical solution on the simulation has eliminated the possibility of 

guaranteed optimality. 

 

 



 60 

4.7 Improved Control Scheme 

 

As previously explained, the tests performed thus far on three-dimensiona l mazes have 

been using a control scheme with 8 possible alignments of the cubic maze, each with one 

vertex of the maze pointing straight up. This has several advantages that are discussed 

later in Section 6.5 'Simulation Controller', but it has a few significant disadvantages as 

well. 

 

Since all the walls of the maze in these alignments will be at the same angle with respect 

to the gravitational vector, there are many occasions when the marble can take more than 

one path with equal probability. Figure 25 in Section 3.6 'Additional Challenges' showed 

an example of how this can happen. This causes three major problems for this system.  

 

• The marble could take one path as a response to a move, and take another path 

(due to minor roundoff errors and other effects) the next time the same move is 

made. This increases the chances of non-repeatable moves occurring. 

 

• The equal likelihood of more than one path being taken severely impacts the 

ability of the agent to predict which path will be followed.  

 

• There exists the possibility that the marble will roll down balanced on the edge 

between the two walls, and come to rest in an undefined state. 

 

To deal with these issues, a more complex set of possible alignments of the maze was 

developed. The alignments were carefully chosen such that the projection of the 

gravitational vector onto each of the three axes would each have a different magnitude. 

This should generally result in the marble being more likely to travel in one direction 

than in the others. 

 

The strategy for choosing additional the possible orientations was to move the previous 

points corresponding to the orientations (the vertices of the maze) slightly away from 
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each vertex, a different dis tance along each axis. Figure 35 shows a 2 dimensional view 

of the maze in one of the previous alignments, with the vector indicating that the vertex is 

aligned at the top. Figure 36 shows the new points corresponding to the new alignments. 

Each of these points represents a point that will be straight up in one of the possible 

orientations, as shown by the vector in the Figure.  

 

                      
 

Figure 35: Old Alignments on Vertices                    Figure 36: New Alignment Points 
 

When this procedure is applied to the six sides of a cubic maze, there are 4 points on each 

side of the cube corresponding to possible alignments, for a total of 24 alignments. Figure 

37 shows the cube (outlined in blue) and the new alignment points (the intersections of 

the white lines). The lines connecting the alignment points indicate the possible moves 

that can be made by rotating the maze from one alignment to another. The close-up view 

in Figure 38 shows that for each alignment, there are now 4 adjacent alignments, 

corresponding to 4 moves that can be made. Two of the moves will be to the other two 

points that are nearest to it, and 2 will be to the closest points near adjacent corners of the 

maze. 
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Figure 37: New Alignments and Moves,                             Figure 38: Adjacent Alignment Points 
                              Cube Outlined in Blue 
 

Since each alignment now has four adjacent alignments, there are now 4 moves that can 

be performed by the agent at any time. This means that the physical state graph now has a 

branching factor of 4 instead of 3. Also, since the states themselves consist of the marble 

location and maze alignment, we now have 3 times as many possible states. The hope is 

that the additional level of control and predictability of the movement will outweigh the 

additional complexity of the physical state graph. 

 

One of the drawbacks to this scheme is that there are now three times as many states to be 

learned, i.e. added to the physical state graph. This could have a significant negative 

impact on the performance of the agent. This negative impact can be reduced somewhat 

by taking advantage of the geometry of the new alignment scheme. Looking at Figure 39, 

we can see that each vertex of the cubic maze has 3 alignments in close proximity to it. If 

the marble is at rest in one of these three alignments, it is reasonable to assume it will be 

at rest in the same cell of the maze when a move is made to either of the other two. 

Technically, this is due the fact that the projections of the gravitational vector onto the 

coordinate axes in each of these three alignments will be in the same directions. 
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Figure 39: New Alignments Near Maze Vertex, 
            Cube Outlined in Blue 

 

This means that whenever a state is encountered in one of these three ‘close’ alignments, 

we can predict with certainty which state will result from a move to the other two 

alignments in that corner of the maze, and can therefore update the physical state graph 

with that information without having to simulate the physical move. Essentially, we are 

giving the agent the ability to see and assume the results of ‘obvious’ moves, without 

having to waste time trying them out. These additional states will still have an impact on 

performance, since they are states that will likely have to be physically moved through to 

get to other states. But no time will be expended learning them initially. 

 

In Table 6 below, the performance results are summarized for the Complete Solution 

Prediction Algorithm using both the previous 8 orientations and the new control scheme 

with 24 orientations. Again, the same 100 5x5x5 outer-layer mazes were used to test both 

algorithms.  
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100 5x5x5 Outer-Layer Mazes 

Average Length of Theoretical Solution  
from Starting Cell to Target Cell = 18.4 Cells 

Search 
Algorithm 
Employed 

Avg. 
Num. 
Moves 

%  
Frozen 

% 
Unsolvable 

Num. 
Repeated 
Moves 

Num. 
Unrepeatable 

Moves 
Complete 
Solution 

Prediction 
with 8 

Orientations 

21 25 7 236 6 

Complete 
Solution 

Prediction 
with 24 

Orientations 

57 7 4 2354 30 

 
Table 6: Solution Prediction Algorithm for 5x5x5 Outer-Layer Mazes Using 8 and 24 Orientations 

 

As we can see from the data, the number of moves required to solve each maze actually 

increased. This is due to the increased number of possible orientations, which equate to 

states that must be moved through on the path to the solution. The reliability of the 

algorithm however was improved significantly. Even though the additional moves create 

increased opportunities for 'frozen' states to occur, the number of such states was reduced 

to about a fourth of what was typically experienced using only eight orientations. The 

number of unsolvable mazes was also reduced to 4, perhaps due the additional control 

provided by the additional orientations. The reductions in frozen states and unsolvable 

mazes resulted in 89 of the 100 mazes being solved, as opposed to the 68 which could be 

solved using 8 orientations. 

 

Unfortunately, the accuracy of the path prediction algorithm was not improved with the 

additional orientations, and the additional opportunities for errors (from the increased 

number of moves required) resulted in only 17 of the mazes being completely solved with 

no prediction errors. These 17 mazes were however solved with an average of only 9.3 

moves.  
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 One significant disadvantage to this control scheme occurs when the maze is not 

physically solvable with any sequence of moves. The algorithms developed for this thesis 

do not ‘give up’ on finding a solution as long as there are unknown states in the physical 

state graph. This control scheme therefore takes significantly longer to detect that a maze 

is unsolvable, since there are now three times as many possible states. Furthermore, since 

there are now four times as many orientations, it can take many more physical moves to 

get to each unknown state to be explored. Although the results of many of these moves 

can be predicted, they still represent states that the marble must move through to get to 

the unknown states. In the worst case, the agent took almost one hour to perform over 

1400 moves in order to determine that the maze was unsolvable. 
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5. Final  Analysis and Comparison of Results 

 

In order to summarize the results, and evaluate all the methods used in this thesis, each of 

the solution algorithms was used to solve the same mazes. Table 7 below shows the 

results of testing the methods on the same 100 outer- layer mazes measuring 5 cells along 

each edge. 

 

100 5x5x5 Outer-Layer Mazes 
Average Length of Theoretical Solution 

from Starting Cell to Target Cell = 18.4 Cells 
Search 

Algorithm 
Employed 

Avg. 
Num. 
Moves 

% 
Solved 

% 
Unsolvable 

% 
Frozen 

Num. 
Repeated 
Moves 

Num. 
Unrepeatable 

Moves 
Depth-First 181.1 20 4 76 3194 48 

Breadth-First 114.6 34 15 51 687 10 
Simple 

Heuristic 74.3 61 9 30 1037 41 

Improved 
Heuristic 

20.3 64 10 26 221 7 

Single Move 
Prediction 18.6 62 11 27 117 0 

Complete 
Solution 

Prediction –  
8 Orientations 

21 68 7 25 236 6 

Complete 
Solution 

Prediction – 
24 Orientations 

57 89 4 7 2354 30 

 
Table 7: Search Algorithm Comparison for 5X5X5 Outer-Layer Mazes 

 

As one would expect, the blind search methods performed poorly. The depth-first search 

algorithm took over 24 hours to run on all 100 mazes, and could solve only 20% of them 

(100 total mazes minus 4 unsolvable and 76 frozen). The Single-Move prediction 

algorithm was able to solve mazes with the fewest moves, but the Complete Solution 

Prediction algorithm using 24 orientations was the most reliable, solving 89% of the 

mazes tested (100 total mazes minus 4 unsolvable and 7 frozen). 
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To compare the performance of the algorithms on less challenging mazes, each method 

was applied to the same 100 3x3x3 all- layer mazes that were used to initially test the 

blind search algorithms. The results are summarized in Table 8 below.  

 
 
 

100 3x3x3 All-Layer Mazes 
Average Length of Theoretical Solution 

from Starting Cell to Target Cell = 8.5 Cells 
Search 

Algorithm 
Employed 

Avg. 
Num. 
Moves 

% 
Solved 

% 
Unsolvable 

% 
Frozen 

Num. 
Repeated 
Moves 

Num. 
Unrepeatable 

Moves 
Depth-First 96.8 66 1 33 4013 17 

Breadth-First 52 87 2 11 610 4 
Simple 

Heuristic 31.5 89 2 9 509 5 

Improved 
Heuristic 

10.5 88 1 11 117 1 

Single Move 
Prediction 8.8 93 3 4 43 0 

Complete 
Solution 

Prediction –  
8 Orientations 

6.8 95 3 2 40 2 

Complete 
Solution 

Prediction – 
24 Orientations 

8.9 98 1 1 231 0 

 
Table 8: Search Algorithm Comparison for 3X3X3 All-Layer Mazes 

 

Notice that unlike the case for the larger mazes, for these smaller mazes, the algorithms 

utilizing path prediction all perform better than the ‘Improved Heuristic’ method. This is 

due in part to the shorter paths involved in smaller mazes, leaving less opportunity for the 

marble to stray from the predicted path. Comparing the final algorithm developed 

(Complete Solution Prediction with 24 Orientations) to the first (Blind Depth-First), we 

see that the additional intelligence incorporated into the Knowledge Engine was able to 

improve its performance dramatically. The average number of moves required to solve a 

maze was reduced by over 90%. The reliability, as measured by the percentage of mazes 
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that could be physically solved, was increased from 66% to 98%. Repeatability, the 

percentage of repeated moves that ended with the same results was improved to 100%. 
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6. Implementation 

 

In this section we discuss the software architecture developed to create the maze, perform 

the simulation, and test the algorithms developed for this thesis.  

 

6.1 Software Components 

 

There are six primary software components implementing the ideas presented in this 

thesis. They function together to find and simulate the physical solution to the maze. 

They are summarized here and described in detail in later sections. 

 

• Computer Model: the data structures, naming conventions, and methods used to 

store and access the physical definition of the components (primarily the maze 

and marble) used in this simulation. 

 

• Maze Generator: the logic and code necessary to generate the geometry of the 3 

dimensional maze, through which the marble is to be moved from the starting cell 

to the target cell. Section 3.2 'Maze Generation' discusses the algorithm 

implemented by the Maze Generator. 

 

• Physics Engine: the models of the maze and marble geometry used by the 

physics engine, as well as the simulation of physical moves of the maze and the 

responses to those moves. 

 

• Knowledge Engine: the artificially intelligent agent responsible for determining a 

physical solution to the maze given the geometry of the maze and feedback from 

the Physics Engine. 

 

• Simulation Controller: the component responsible for coordinating the 

simulation and interfacing the Physic s Engine with the Knowledge Engine. 
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• Rendering Engine: the logic and code responsible for providing the three 

dimensional graphical display and animation of the results of the simulation. 

 

The first of these components, the Computer Model, defines how the physical objects of 

the system will be represented, and therefore determines the protocol by which all the 

other elements of the system will access the geometry. The second component, the Maze 

Generator, is used only once at the beginning of each run of the system to define the 

random three dimensional maze to be solved.  

 

The geometry defined by the Maze Generator and stored in the Computer Model is 

provided to the Physics Engine in a format it can interface with. The Physics Engine 

performs the physical simulation of actions (rotations of the maze) to determine the 

response to those actions.  

 

The Knowledge Engine represents the artificial intelligence of the system, which 

encapsulates the methodology for solving the maze. Given the geometry of the maze 

itself and the results of past actions, it determines the next actions to be performed in 

order to move the marble from its current location to the target cell.  

 

The diagram in Figure 40 below shows a high level view of the last 4 components and 

how they must interface with each other to perform the simulation once the geometry is 

defined. The key component integrating the knowledge engine and the physics engine is 

the Simulation Controller. The Simulation Controller interfaces with the Physics Engine 

to request the required actions (moves), and to receive the results of those actions from it. 

The Simulation Controller then provides those results to the Knowledge Engine, which 

uses them as input to determine future actions. Finally, The Rendering Engine 

continuously integrates the results from the physics simulation with the definition of the 

geometry and displays it in a format that can be understood by the viewer. 
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Figure 40: High-Level System Architecture 

 

 

6.2 Computer Model 

 

In order for the software components to efficiently store and access the description of the 

randomly generated maze, consistent and effective conventions for referencing the maze's 

individual components (cells and walls) were developed. The following are the 

conventions adopted for this system: 

 

• Maze Coordinates:  

The coordinate system for the maze itself starts at the origin and is scaled at one 

unit for the width of each cell. A three dimensional cubic maze of size N will 

therefore occupy the space (in the maze coordinate system) from (0,0,0) to 

(N,N,N). This scaling enables the simple computation of the marble's location in 

the maze's coordinate system: Cell Number = (((z-1)*(mazeWidth*mazeHeight)) + ((y-

1) * mazeWidth) + x) + 1. 

 

• Cell Numbering : 

The cells are numbered starting with cell 1 at the origin and increasing by 

increments of one per cell along  the positive X, Y, and Z axes, in that order. The 

decision to make the cell numbering one-based instead of zero-based was made in 

order to make debugging and development more intuitive, but the methods and 

Knowledge 
Engine 

Physics 
Engine 

Rendering 
Engine 

Simulation 
Controller 



 72 

data structures affected could easily be changed to a zero-based convention. Cell 

number j of cubic maze of size N would therefore be located (with its lower left 

back corner) at x = ((j-1) % N2) % N, y = (((j-1) % N2) / N), and z = (j-1) / N2. (Here '%' 

is the modulus operator) 

  

• Wall Numbering :  

The walls of the maze are numbered starting at cell 1; the wall in the positive x 

direction is numbered 0; the wall in the positive y direction is numbered 1; the 

wall in the positive z direction is wall number 2. The count continues in the next 

cell (cell number 2) with walls 3, 4, and 5 in the positive x, y, and z directions 

respectively. In general, the walls for cell number j in the positive x, y, and z 

directions will be (3*j-2), (3*j-1), and (3*j). The walls in the negative x, y, and z 

directions are easily handled recursively by obtaining the wall in the positive x, y, 

or z direction for the cell on the other side of the wall (assuming there is a cell in 

the maze on the other side of the wall).  

 

This convention does number the outer-most walls in the positive x, y, and z 

directions, but does not assign numbers to the outer-most walls in the negative x, 

y, and z directions. This does not create any problems. The primary reason for 

numbering the walls is to keep track of which internal walls have been removed 

(as part of the maze generation), and the outer walls are always assumed to be 

present. This also means that the outer walls in the positive x, y, and z directions 

are being numbered unnecessarily, but doing so enables the use of the above 

numbering conventions, and facilitates the implementation of simple formulas to 

calculate the wall numbers for a given cell of the maze, and the cells on each side 

of a given wall. 

 

Given these feature numbering conventions, functions were developed to enable the 

software components of this system to easily access the information they need. A few of 

the critical examples include: 
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• The component that creates the random maze (Maze Generator) will need to know 

which walls are internal walls that can be removed. It will also need to know 

which cells of the maze are separated by each wall. 

 

• The agent attempting to find a physical solution to the maze (moving the marble 

to the target cell) often needs to determine if there is a wall in a specific direction 

from a given cell. 

 

• The Rendering Engine will need to know the coordinates of the vertices of each 

wall of the maze in order to display it in the proper location.  

 

 

6.3 Physics Engine 

 

Given the importance of the physics simulation to this thesis, and to enable the focus of 

this thesis to be on the solution methodology, we chose to use a third party physics 

engine to perform the actual simulation. The physics engine chosen was Newton Game 

Dynamics. 'Newton' is a no-cost physics engine that is capable of modeling the physical 

phenomena that is relevant to this system (material properties, linear and angular 

momentum, static and kinetic friction, accurate collision detection and response). It is 

also a 'real- time' physics engine which is also important to this project. Unlike 'high-

precision' physics engines, which sacrifice speed in favor of maximum accuracy, Newton 

is capable of performing the real-time simulation required for the graphical display. The 

speed of the simulation is also important when solving numerous test cases to determine 

the effectiveness of a given algorithm. Even running in real-time, the algorithms in this 

thesis required hours to test on a reasonable number of mazes. 

 

In order for the agent to make intelligent decisions based on the outcome of each of its 

actions, it is imperative that the physical simulation is capable of providing reasonably 

accurate results and feeding them back to the agent. To ensure a visually believable 

simulation, and to serve as a fair basis for the agent to act on, the physics simulation must 
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at the very least implement accurate collision detection and response, acceleration due to 

gravity, and friction with the walls of the maze. It is not however necessary to implement 

a physics model that attempts to be extremely precise. Many details that would be 

considered important if we were performing a strict physics simulation can be reasonably 

ignored. Examples of such details would include wind resistance, the rate at which 

impulses travel through objects during a collision, etc.  

 

What is important is that the simulation be repeatable. Performing a given action, such as 

a rotation of the maze, from a given state (the current location of the marble) should lead 

to the same results (the new location of the marble) each time the action is performed. If 

this were not the case, the agent would not be able to learn from its experience, which is a 

critical component of the solution methodology. Repeatability might at first seem like a 

given, especially on a digital computer, but slight differences in the state that may be 

visually imperceptible can lead to a different response to a given action that would result 

in a different state. Another critical requirement is that the physics model ‘follow the 

rules’ of the game. Common errors that occur in physics simulation, such as undetected 

collisions enabling a solid object to pass or “tunnel” through another solid object would 

prevent this system from functioning as desired or possibly from functioning at all. 

 

There are several unique aspects to this system that present a challenge when 

implementing a general-purpose physics engine. First of all, the geometry of the maze 

itself is non-trivial, with numerous concave as well as convex surfaces. Each wall cannot 

be modeled separately, since they are all part of a single solid object and cannot move 

independently. This requires a single ‘collision mesh’ to be used. Non-trivial meshes such 

as this are common in other simulations, but generally for surfaces that do not move 

(such as terrain or buildings). These immobile objects are generally treated as having 

infinite mass in the physics simulation [Jerez, 2004].  In the case of this project, the maze 

must be movable (so it can be rotated), and therefore must have finite mass. It must also 

be constrained on a system of ‘hinges’ that prevent it from falling.  
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Newton Implementation 

 

In order to implement the Newton physics engine, the system (maze, marble, and control 

scheme) must be modeled in a Newton-compatible format. The maze and marble are 

modeled as 'NewtonBody' objects, as defined by Newton's interface. There are primarily 

two important properties of the NewtonBody objects that are needed by this system: a 

'NewtonCollision', which is the collision mesh used by Newton to model the interactions 

between objects, and a transformation matrix which Newton uses to store the current 

orientation and location of the object. 

 

The collision mesh for the marble is easily created using the NewtonCreateSphere() 

method provided by Newton. The geometry of the maze is however far more complex. 

Recall that the maze is defined by numerous individual walls. These walls must be given 

a positive thickness for the collision detection to function properly. The walls cannot 

however be modeled as individual rectangular prisms, since they must be connected as 

part of the same collision mesh. In other words, the walls must all move together as one 

single entity. Fortunately, Newton provides a way to create what is called a 'Compound 

Collision'. This enables the creation of a maze with multiple rectangular prisms, and 

joining them in the proper locations as part of a single collision mesh. Functionality in 

Newton creates the necessary constraints to force the walls to act together as a single 

geometric body.  

 

The code developed for this system defines the individual walls such that they have the 

required thickness and are positioned in the correct locations. The walls have to be 

carefully overlapped to create a continuous surface while avoiding 'pits' between them.  

Figure 41 below shows the complete collision mesh for a sample maze, with the wall 

thickness exaggerated for visibility. 
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Figure 41: The Collision Mesh 
 

Once the NewtonBody objects are specified to the Newton physics engine, the function 

NewtonUpdate() is called to request that the physics engine advance the simulation by a 

specified amount of time. The Newton engine then invokes callback methods in which 

this system can specify the forces that are applied to the objects. The callback function 

invoked for the marble simply applies a force to simulate gravity. The callback function 

invoked for the maze is much more complex. This is where the Simulation Controller is 

employed to obtain the desired moves from the Knowledge Engine and to carry out those 

moves by creating the proper constraints on the simulation model and applying the 

appropriate amount of torque to generate the desired rotation.  

 

Newton feeds the results of the simulation step back to the calling program by invoking 

another function with a resultant transformation matrix for each object. This 

transformation matrix represents the new location and orientation of the maze and marble 

in Newton's global coordinate system. Our intelligent agent however requires the location 

of the marble to be in coordinates relative to the maze, in order to determine which cell of 

the maze it is in. To determine the location of the marble in maze coordinates, we need to 

multiply its position in global coordinates by the inverse of the maze's transformation 

matrix. Fortunately, the inverse of the transformation matrices used can be quickly and 

easily calculated [Lengyel, 2002]. 
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Another implementation issue addressed was the compatibility of Newton transformation 

matrices which are in row-major order, and OpenGL (used for the graphical display of 

this system) which assumes column-major order. For this reason, a C++ matrix class was 

developed to perform the transposition as necessary. 

 

 

6.4 Knowledge Engine 

 

The purpose of the knowledge engine is to enqueue the next physical move or moves to 

be made in order to move the marble to the target cell. Different algorithms are used that 

determine the next move or moves to be made, as described in Section 4 'Solution 

Algorithms'. The input that is used for this decision is the historic knowledge of the 

simulation performed (in the form of the physical state graph as described previously) 

and varying amounts of knowledge of the maze itself and the physics involved.   

 

As part of this thesis, several algorithms that can be invoked by the Knowledge Engine to 

determine the next move(s) were developed and tested. The algorithms vary in the 

amount of knowledge of the system that they use. The specific algorithms, and the 

performance resulting from the use of those algorithms have been covered in Sections 4 

and 5. 

 

 

6.5 Simulation Controller 

 

The Simulation Controller serves two critical functions: It serves as the physical control 

mechanism, creating the required constraints and applying the appropriate forces to 

perform the actions requested by the Knowledge Engine, and it coordinates the activities 

of the Knowledge Engine and the Physics Engine to carry out the simulation. 



 78 

Control of Physical Moves 

 

The Control Scheme defines the possible actions (moves) that can be taken and the 

method by which they are carried out. As described previously, the moves are 

specifically designed to result in one of a finite set of states. These states are defined by 

the orientation of the maze and location of the marble in the maze. The choice of possible 

orientations is critical for this to work. 

 

The orientations are chosen such that after any move, the marble will necessarily come to 

rest at the intersection of three walls (2 walls in two dimensional mazes), and therefore be 

located in a single cell of the maze which can be determined from the Physics Engine. 

This can be accomplished by choosing the orientations for which the projection of gravity 

onto the three axes is non-zero. Since the maze walls are aligned with the coordinate 

axes, this equates to the walls all being at an angle with respect to gravity, in which case 

the marble will naturally roll down the walls until it is stopped in all possible directions 

by walls of the maze. 

 

For the two dimensional case the obvious choice that was implemented was to select four 

possible orientations in which each of the four corners is pointing straight up. This puts 

the walls at the steepest possible angle, resulting in the marble coming to rest in its final 

location as soon as possible. The analogous choice of orientations for three dimensional 

mazes is to have each of the eight vertices of the cubic maze pointing straight up. This 

choice has several advantages: 

 

o It positions the walls such that they are at the steepest possible angle, thus 

leading to the marble coming to rest in its final location as quickly as 

possible after a move is made. 

 

o There are only eight such orientations, the minimum possible to locate the 

marble in all potential resting locations. 
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o With a move defined in terms of rotating from a starting alignment to an 

ending alignment corresponding to an adjacent corner, there are only three 

possible moves, corresponding to a branching factor of three in the 

physical state graph. Figure 42 shows a vertex on the cubic maze 

corresponding to one possible alignment, and the three adjacent vertices 

that can be moved to.  

 

o It is easy to find orientations that are adjacent to (one move away from) a 

given orientation. With the cubic maze centered at the origin, and the 

orientations defined by the Cartesian coordinates of the cube’s vertices, 

the three adjacent vertices (and thus the three alignments that can be 

moved to) can be found by simply changing the sign of the X, Y, or Z 

coordinate. 

 

 
 

Figure 42: Adjacent Alignments 
 

For these reasons, this choice of orientations was chosen for much of the testing 

performed for this thesis. There are however major drawbacks to this choice which were 

discussed and dealt with in Section 4.7 'Improved Control Scheme'. 

  

A natural way to define and store these orientations in the implementation is as a unit 

vector pointing from the center of the maze to the corner of the maze that will be pointing 

straight up in that orientation. The orientation vectors are therefore simply the negative of 
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the vector representing gravity in that orientation. This provides a simple definition and 

implementation of the moves, or actions that can be performed on the maze by the 

intelligent agent. A move is simply a rotation about a single axis from one alignment to 

another. The axis of rotation can easily be determined by computing the cross-product of 

the vector representing the current alignment with the vector representing the next 

alignment, as covered in Section 3.5 'Simulation of the Physical Solution'. The required 

angle of rotation can also be quickly determined using the arccosine of the dot product of 

the two orientation vectors. 

 

Once the axis of rotation has been determined, it can be modeled in the physics 

simulation using a constraint in the Newton engine referred to as a 'Hinge'. Each time the 

'ForceAndTorque' callback function is invoked by Newton, an appropriate amount of 

torque about the axis of rotation is applied to accelerate or decelerate the rotation based 

on the current angle. The amount of torque required to attain the desired angular velocity 

is not easily calculated. The size of the maze and its geometry, which varies randomly, 

will affect its mass and moment of inertia [Eberly, 2004]. Since the marble itself has 

mass, its location in the maze will also affect the moment of inertia of the system, thus 

affecting the amount of torque required. If the marble is in motion, things are further 

complicated, especially when collisions occur between the marble and the walls of the 

maze. The maze’s response to these collisions will often induce other rotational forces 

about the axis.  

 

Fortunately, the amount of torque does not have to be computed exactly. What is 

important is that the torque is not so large that it ‘pushes’ the marble with excessive 

force, thus throwing off the resulting states which we would like to be primarily the result 

of gravity, not of other external forces. We do however need enough torque to rotate the 

system by the required angle, without moving too quickly when it reaches the desired 

alignment. The solution implemented was to make the mass of the maze walls large in 

comparison to the mass of the marble, so the effect of the marble on the rotation is 

negligible. The magnitude for the torque required to achieve the desired acceleration and 

deceleration was then determined experimentally for each maze size used. 
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After accelerating, a deceleration phase is implemented. The deceleration not only makes 

the animation of the move appear ‘smooth’, but also minimizes the momentum of the 

marble when the maze stops. If the marble was experiencing excessive motion from the 

movement of the maze (i.e. being pushed) when the maze was stopped, this too could 

have an unacceptable effect on the motion of the marble and its final location. It would 

also be a very unrealistic simulation if the maze, with its relatively large mass, suddenly 

stopped without decelerating. 

 

Once the maze has rotated to the next desired orientation, another Newton hinge is 

created with a zero torque. This hinge simply acts as an additional constraint on the 

maze's motion, effectively serving as a ‘brake’. In addition to stopping the rotation of the 

maze, this additional constraint serves to keep the maze from falling when the rotation 

hinge is removed in preparation for the next move. Even if no gravitational force is 

applied to the maze itself, the marble inside of it has a gravitational force, and would 

therefore cause the maze to fall if it is not constantly held up.  

 

 

Coordination of Knowledge Engine and Physics Engine 

 

In addition to performing the physical moves to be simulated, the Simulation Controller 

provides the overall control of the system, integrating the physical simulation with the 

artificial intelligence. It uses feedback from the Physics Engine to maintain the history of 

previous moves and their results (in the form of the 'physical state graph' discussed 

previously). This historic data is used by the Knowledge Engine in its decision-making 

process. The Simulation Controller then carries out the actions chosen by the Knowledge 

Engine in the manner described above.  
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The model used to handle this coordination is a finite state machine. The possible states 

for the system are: 

 

• WAITING 

• STABLE  

• ACCELERATING 

• DECELERATING  

• SOLVED  

• FINISHED  

• FROZEN 

 

Each time an update is requested of the Newton physics engine, it invokes a callback 

function to set the desired forces on the objects of the system. As well as being able to 

effect the simulation, this callback function has access to the current status of the objects 

in the simulation. It has therefore been implemented as the main function of the 

Simulation Controller. The states, the activities associated with them, and the transitions 

between them are as follows: 

 

• WAITING:  

 

This is the initial state of the system when it is first started, as well as the state 

after a move has been completed. When in this state, the Simulation Controller 

monitors the kinetic energy of the marble to determine when it has come to rest. 

The marble must remain at rest for a specified period of time, otherwise brief 

periods when the marble is changing direction or temporarily balanced on the 

edge of a 'cliff' could be falsely identified as a stable state. Once stability is 

detected, the condition of the marble must be tested to determine if it is actually 

resting in a 'valid' location, or if it is simply balanced between states, in the 

'Frozen' condition covered previously. If this problem is detected, the state is 

changed to FROZEN to serve as an indicator that the maze is not solvable (the 
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methods presented in Section 4.7 'Improved Control Scheme' are designed to 

avoid this condition as much as possible). Once true stability is determined, the 

state is transitioned to STABLE. 

 

• STABLE:  

 

This is the state in which the previous move is finally complete. The actual results 

of the previous move are determined from the Physics Engine and stored in the 

physical state graph. The location of the marble is checked to determine if it is in 

the target cell. If it is, the state is transitioned to SOLVED. Otherwise the queue 

of moves to be performed next is checked. If there are no additional moves 

queued up, the Knowledge Engine is invoked. It uses data from the physical state 

graph as well as knowledge of the geometry of the maze itself and the physics 

involved to determine the next move or moves. These moves are added to the 

queue of moves to be processed. If no new moves can be made (the maze is 

determined to be unsolvable), the state is transitioned to FINISHED. 

 

If further moves are possible, the next move to be processed is popped off the 

queue and the next desired orientation is determined. Using this and the current 

orientation, the axis of rotation is determined and created in the Physics Engine. 

The constraint corresponding to the axis of rotation for the previous move is 

removed. The constraint which acted as the brakes during the WAITING state is 

also removed to allow rotation about the new axis. The state is transitioned to 

ACCELERATING to begin the next move. 

 

• ACCELERATING:  

 

In this state, a positive torque about the axis of rotation is applied to perform the 

desired move. The physics engine is queried to determine the current orientation 

of the maze. When its rotation has exceeded half the desired sweep angle, the 

state is transitioned to DECELERATING.  
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• DECELERATING 

 

During deceleration, a negative torque is applied about the axis of rotation to 

begin slowing the maze down. When the maze has attained (within an acceptable 

tolerance) its desired orientation, the 'brake' constraint is created to stop the 

movement of the maze. Although the movement of the maze has been halted, the 

marble inside is still moving to its final resting location. The state is transitioned 

to WAITING until that final location can be determined. 

 

6.6 Rendering Engine 

 

Computer graphics is an essential component of this thesis. The three dimensional view 

of the maze, and the animation of its solution, is critical to the development, testing, and 

final display of the system. To handle the computer graphics, the libraries OpenGL and 

GLUT [Angel, 2003] were utilized. Since this is a simulation, rather than an interactive 

application, the GLUT (the OpenGL Utility Toolkit) API was able to provide all the user 

interface functionality needed, and greatly simplified that aspect of the development. By 

acting as an abstraction layer between the domain-specific code and the Windows 

operating system, it enabled the development to be concentrated on the physics model 

and on the AI needed to solve the problem, rather than on the low-level interface 

functionality that is specific to Windows. 

 

The geometry used to create the marble and maze is actually quite simple, consisting of 

only a sphere and square polygons. There are however some interesting challenges 

created by the numerous polygons involved, and the fact that the geometry must appear 

transparent, since everything of interest takes place inside of the maze. As explained in 

Section 6.2 'Computer Model', long continuous walls which span multiple cells of the 

maze are actually constructed of numerous individual smaller walls, one for each side of 

each cell. This presents a problem when attempting to display them as if they were a 
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continuous wall. If the walls are outlined as in Figure 43 below, the numerous lines 

outlining the polygons make the representation very confusing. If however the polygons 

are not outlined as in Figure 44, the delineation between the cells is not as apparent, 

especially if it were displayed on a monitor with limited capability. 

 

            
 

Figure 43: All Polygons Outlined                           Figure 44: No Polygons Outlined 
 

The solution to this was to determine and display only the edges of polygons where they 

intersect at a right angle. The effect is to visually ‘stitch together’ polygons that meet 

edge-to-edge to form a single wall section. As can be seen in Figure 45, this significantly 

enhances the viewer's ability to understand the geometry. This detail – determining where 

to draw the line segments representing the edges – actually takes more computational 

time than generating the maze itself, but fortunately it only needs to be done once for 

each maze.  
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Figure 45: Selective Edges Drawn 
 

Another challenge for the Rendering Engine comes from the fact that the game requires 

both opaque objects (the marble) and transparent objects (the walls). This required 

careful consideration of the order in which things were rendered, when to enable or 

disable lighting, and when to enable or disable depth testing. The solution that yields 

visually acceptable results is to draw the translucent polygons of the walls first with 

lighting and depth-testing disabled (so they do not block the view of the marble), drawing 

the solid sphere of the marble with lighting enabled, and then drawing the edges of the 

walls (as determined above) with depth-testing enabled to make it clear that the marbles 

are in fact behind the walls.  

 

Another function that must be handled is the timing of the graphical updates. Updating 

the display every time the physics simulation is updated is not a good idea. Generally, the 

Newton physics engine can compute the new state of the system in far less time than it 

takes to render the objects and swap the frame buffers. If the graphics were updated every 

time the simulation was updated, the result would be an incredibly slow motion. One 

possible solution would be to advance the simulation by a larger time increment each 

time Newton is invoked, but this leads to unacceptable inaccuracies in the simulation.  

 

A better solution, which was implemented for this thesis, is to advance the simulation as 

frequently as possible, and maintain a running timer to keep track of when the graphical 
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display is due to be updated. When a certain elapsed time (corresponding to the desired 

frame rate) has passed, the Rendering Engine updates the display with the current state of 

the geometry, which is obtained from Newton in the form of transformation matrices for 

each object. Although this results in the physics simulation being advanced several times 

between graphical frames, the changes from one frame to the next are very minute. The 

resulting effect is a smooth animation of a real- time accurate simulation. 
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7. Summary & Conclusions 

 

For this thesis, algorithms were developed for finding the physical solution to a random 

three dimensional maze. The ‘Physical solution’ consists of being able to roll a marble 

from the starting cell to a target cell of the maze by rotating the maze itself and relying on 

the physics simulation to move the marble. To implement the solution, a software 

framework was developed which integrated the artificial intelligence, physics simulation, 

and computer graphics required to determine and animate the solution. 

 

The intelligent agent controlling the maze depends on the physical simulation to 

determine the results of its actions. The agent's incomplete knowledge of the outcome of 

each move, before making it, creates much of the challenge for this thesis. The physical 

moves are not reversible, and therefore traditional search algorithms, which are reliant 

upon backtracking, can not be applied directly. 

 

Several solution algorithms were developed to solve the physical puzzle. These 

algorithms all use elements of graph theory to expand the agent's knowledge of the maze 

being solved and the results of specific actions. The algorithms differ in the level of 

additional knowledge utilized pertaining to the maze's geometry and the physics 

involved. In general, it was shown that increasing the 'intelligence' of the agent 

significantly improves its performance. A modified control scheme was also developed 

which improves the physical actions that can be made by the agent. This was shown to 

reduce problems which occurred as part of the physical simulation. 

 

The dependence upon the physical simulation was also shown to affect the analysis of the 

algorithms developed. All of the solution algorithms are complete in the sense that they 

are able to solve any random maze, but only under the conditions that a physical solution 

is possible, the control mechanism is capable of performing the necessary actions, and the 

marble does not enter a section of the maze from which it cannot escape. Interestingly, 

none of the algorithms developed can be guaranteed to find the optimal physical solution, 

since this would require perfect knowledge of the results of a given move before it is 



 89 

made, which is not possible. However, despite the limitations imposed by the physical 

simulation, the best algorithm developed was able to improve the performance (as 

measured by the number of mazes that could be solved) over a simple blind search by 

over 400%, while requiring 69% fewer moves.  

 

In this thesis, artificial intelligence, physics simulation, and computer graphics are 

successfully integrated to develop and display the solution to an interesting problem that 

could not be solved without each of the three technologies.   
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