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Abstract 
 

     This thesis develops an in-depth mathematical description of the cross-ambiguity 

function.  The cross-ambiguity function is a time (𝜏) and frequency (𝜈) analysis technique 

employed to solve many signal processing problems such as interference mitigation and 

the location of emitters.  The function can be given as: 

  𝜏 𝜈  ∫        
     𝜏          

 

  

 

 

where the convolution of two transmissions is in analytic signal format.  X(τ, ν) is the 

peak energy or power, where τ is the time delay and ν is the frequency off-set (Doppler).  

      is the signal received at one collector, and   
     𝜏  is the signal (complex 

conjugate) received at the second collector.  Finally,        is the Fourier artifact 

containing the frequency off-set.  Thus, the realm of the cross ambiguity function lies 

predominantly in the field of communications and electrical engineering where systems 

design is of importance.  As such, the mathematical treatment of the cross-ambiguity 

function is brief, and is often presented with little detail in order to primarily fulfill 

engineering goals in the literature.  This leaves the reader with subtle, but important gaps 

in understanding, such as, how convolution takes place, differences in the complex 

envelope and analytic signals, the Fourier series, and the use of complex conjugates.  

This thesis provides the mathematical foundation and concepts to more completely 

illustrate the cross-ambiguity function’s characteristics.  There are many signal 

processing problems that can be used to demonstrate the cross-ambiguity function such as 

the matched filter, system design, noise reduction, and geolocation.  This thesis selects 

collection of an emitter since the inherent geometry of the problem provides the clearest 

illustration of the function's time and frequency operations.  Upon it mathematical 

concepts such as convolution, correlation, the work of Euler, the complex conjugate, 

Hilbert transform, the Fourier transform, and advanced integration techniques are 

presented.  Further, the cross-ambiguity function is applied to the case of a square pulse 

emitted from a signal slow moving emitter and collected from to disparate collectors 

assumed to be moving at different speeds.  This framework sets the stage not only for 

clarity of the geolocation problem, but a more clear understanding of time and frequency 

analysis.  Finally, important aspects of the cross-ambiguity function are demonstrated in 

MATLAB. 
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1.  Introduction 

 

      A clear, in-depth, and comprehensive mathematical treatment of the cross-ambiguity 

function will be presented.  This thesis will clearly discuss and document the cross-

ambiguity function's underlying mathematical concepts such as convolution in time and 

frequency, more specifically, what we will call time delay and Doppler shift (frequency 

off-set).  An important concept, the analytic signal, will also be presented and as such 

lead to discussion of Fourier and Hilbert transforms as well as Euler’s definition of 

complex signal components.  Reaching a peak between the time delay and Doppler shift 

demonstrates the most likely time and frequency features of the geolocation model.  The 

thesis presents the basic geolocation model of a relatively stationary emitter and two 

moving collectors typical of search and rescue operations.  The emitter construction will 

be a rectangular pulse.   

Several assumptions are made. The first is that additive white Gaussian noise (AWGN) 

will be trivial to the solution and this will be explained more fully in the body of the 

thesis.  In brief, AWGN is constant and low-level broadband background noise chiefly 

from natural sources.  Our signals will be clearly discernible above this noise floor.  

Further, it will be assumed that the pulse collected by the collectors will be similar.  

Detection as such will be assumed, the problem of the thesis is to demonstrate the cross- 

ambiguity function insofar as geolocation is concerned.  Therefore, the time and 

frequency features will be correlated to produce the highest energy peak and thus the 

emitter’s location.  That is, it will also be assumed that we know the location of the 

collectors – only the location of the emitter is unknown.  Also, we will assume that the 

frequency off-set is constant across the width of the pulse.  The importance of this effort 

lies in the comprehensive and detailed survey of the mathematical, not engineering, 

aspects of the cross-ambiguity function.  Results are often presented deus ex machina 

with no fundamental treatment of the concepts underlying their demonstration.  For 

example, the complex conjugate is often cited a part of the convolution process, but little 

or no attempt is made to explain its appearance.  

 

2.  Literature Review 

 

     The goal of the literature review was to support this thesis' effort to enhance the 

understanding of the cross-ambiguity function by integrating a wide range of 

mathematical concepts into an engineering framework.  A comprehensive review of the 

literature was conducted using the library and Internet.  It was found that the literature 

fell into two basic categories: mathematical literature that concentrated on the concepts 

underlying the function, and engineering literature that focused on a specific aspect of it.    

As described by Dominguez [11] in his history of convolution, the familiar integral 
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equation form of convolution was first discussed by Volterra [41].  This integral equation 

took the form 

∫    𝜏   𝜏  𝜏    ̇ ̇

 

 

    

where  ̇ ̇    is “la composition de deux fonctions f et g” - the composition of two 

functions   and  .  The notation was later formalized by Doestch [10] as 

                                                     ∫    𝜏   
 

 
   𝜏  𝜏      

with the right hand side of the equation denoted as       . Convolution is the amount of 

overlap between two distinct functions [45], and has many practical applications in 

imaging, acoustics, digital signal processing and radar.  Convolution, by itself, is given 

satisfactory treatment in the mathematical literature by Bracewell [5], Debnath and 

Mikusinski [8], and Rahman [29].  

Relating to this work, convolution was applied in the area of the complex signal by Ville 

in his ground-breaking document [40]. Ville compared the characteristics between two 

signals using convolution as his basic operator to determine the level of shared 

characteristics, especially in time and frequency.  His mathematical treatment is 

impressive.  However, the overwhelming goal of the document is an engineering 

discussion of the complex signal in time-frequency analysis.  Later, Woodward, in his 

seminal work [47], applied it to the processing of two radar reflections. Here, with Ville 

in mind, Woodward presented a function that analyzes the time and frequency 

components of the radar signal.  The purpose was to determine the amount of shared 

characteristics by investigating the peak energy when time and frequency are considered 

in two dimensions.  Called cross-correlation, this is what has become known as the cross- 

ambiguity function.  In [47] he discusses convolution, but it is a cursory discussion 

leading up to a more applied discussion of the cross-ambiguity function from strictly an 

engineering standpoint.  

 Among other areas of inquiry by Moura and Rendas [25], with the advent of automated 

computer processing, much literature has been devoted to making the cross-ambiguity 

function's processing more efficient, Stein [36] and Yatrakis [49].  Stein, uses the basic 

Woodward function in minimizing the processing burden.  All documents focus on their 

application, and generalize the mathematical foundation upon which they were 

developed. 
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3.  Convolution 

 

3.1  Preamble 

 

     In general mathematical terms, convolution is the combination of two functions 

resulting in a third function [35].  While convolution has many different fields of 

application, it has a common use in that it determines the amount of overlap between two 

functions.  It can be applied to many areas such as engineering, image and signal 

processing, acoustics, optics [42], and biology to compare seemingly similar features. 

 

3.2  History 

 

     Convolution in its modern form has been mainly attributed to Italian mathematician 

Vito Volterra.  Other 17th- to 19th-century mathematicians employed similar concepts in 

their particular fields such as D'Alembert in Taylor's series, Fourier and Dirichlet in the 

Fourier series, Euler in differential equations, Abel and Louiville in integral equations, 

and Reimann in fractional calculus [11].  Some even credit Doetsch, who referred to the 

process of convolution, in a German word used by Hilbert [24] – as Faltung (folding), 

with its current use. (This concept of a Faltung Integral [29], "folding", "flipping", or 

"reversing" a function will be addressed in later sections.)  Each researcher was in some 

way trying to describe the behavior of a system over time through their particular 

application.  As discussed earlier, it was Volterra's work in integral equations that 

presented and codified the familiar form of the convolution integral used today.  In his 

book [41] Volterra takes the integral of the product of two functions in what he calls the 

composition of the first kind to produce a resultante [11].  Represented here again, the 

composition is 

 

                                            ∫      𝜏   𝜏  𝜏   ̇    ̇
 

 
.   

 

This has become the standard integral equation form of the real convolution integral 

where two functions are composed over a specific time period,  .  The variable, τ, is the 

integration variable.  As the integral suggests, we will be examining each time delay 

value from zero to   for a functional combination exhibiting the most commonality.  A 

central and common feature to all the work of mathematicians in this area of composition 

products is the aspect of the time-shifted function.  In order to examine the historical 

behavior of a system, a plus (+) or (in this case) minus sign (-) operator must be 

introduced.  Then the product of two functions is found and finally summed or integrated 

over a specific time period.   Thus, we highlight the idea of a time shift and off-set that 

becomes one of the main analytical features of the cross-ambiguity function.   
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3.3  Basic Principles 

 

     Convolution is the mathematical foundation of the cross-ambiguity function.  For our 

purposes, convolution is an operation that composes [5] an output by combining an input 

that has been weighted and summed by another function over a defined range of values.  

Thus, we are viewing it in a mathematically traditional [35] way where a result (the 

output) is the function of one or more variables.  One input function and another 

weighting function are, at each value, multiplied and the value(s) are summed to produce 

a result that represents a standard of overlap.  The output function represents these results 

at each value(s) from which one can determine the character of the input.  The area of 

digital signal processing, which this thesis invokes, is especially amenable to convolution 

since signals can be digitized (sampled) into discrete values.  Signals from different 

sources can be compared through the convolution method because their individual 

samples can be easily manipulated by multiplication and integration.  Not only can the 

output be viewed numerically, but the convolution method can be visualized quite 

naturally.   

 

4. Discrete-Time Convolution 

  

     At this point, it is natural to begin discussing the mathematical mechanics of 

convolution using the discrete case.  The discrete case has intrinsic illustrative value 

since, as the aforementioned paragraph states, in digital signal processing, signal samples 

are the basic elements processed in convolution.  Thus, discussing the discrete case has 

not only conceptual mathematical value, but applied value as well. 

 

In discrete-time convolution, the convolution takes the product of two functions and then 

sums them over a defined time period. The discrete-time convolution formula is 

 

     [ ]   [ ]   ∑  [ ] [   ]

 

     

 

where  [ ] is the output function,   [ ] is the input function, and  [   ] is the 

weighting function [1], [27] and [32].  The value   is an important variable.  The variable 

  is an upper limit on the indices and often represents the specific time [32] period in 

question.  In our application,   is a specific time at which samples from the two signals 

 [ ] and  [   ] are multiplied.  The variable index   performs indexing for each  th 

[37] value up to and including,  , i.e., (   ), over which products of the two functions 

are summed.  As such,   performs the accumulation for the convolution.  Thus, the 

discrete convolution formula performs calculations for each specific instance of time,  .  

Each sample at the specific time   of the output signal is composed of the summation of  
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products indexed at each,  .  For example, if the output signal is composed of nine 

discrete time samples, each discrete time sample is its own particular instance of time,    

so there are nine different  's.  For instance, the following example using the discrete 

time formula illustrates this concept. 

 [ ]   ∑  [ ] [   ]                           

 

    

 

 

 [ ]   ∑  [ ] [   ]                           

 

    

 

  

  

  

 [ ]   ∑  [ ] [   ]                           

 

    

 

Thus, the output signal is composed of  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ] and 

 [ ] - the formulas above.  So we should not, for example, confuse  [ ] as representing 

an entire sequence of samples, although some authors do use such notation.  This clearly 

is a matter of notation, but one that is frequently employed.  Other notations express not 

just the transformation of the function(s) in terms of a specific time,  , but may use "·" to 

denote an entire sequence of   [   ] and   [ ], for example,   [ ]     [ ]  [14].  So, 

we could write that   [ ]    [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ] and  [ ]. 

The cross-ambiguity function represents a continuum of values each related by a time-

shift demonstrating a convergence of product and sums.  As we will see, the convergence 

of values represented by this sequence of values forms an ideal characteristic maximum 

value at some specific discrete time sample.  All other discrete time samples should be 

less than this maximum value, or as we will call it a characteristic “peak”. 

4.1  Upper and Lower Indices 

     Mathematically, the lower index of  , the start of the indexing, is the first instance of 

time where the first non-zero value of convolution first occurs, i.e., the first non-zero 

instance where samples from the two different functions (signals) are multiplied and 

summed.   The upper index   is the last instance of a non-zero product of samples 
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between the two functions [32].  Thus, the products of the output signal are zero below 

the lower limit and above the upper limit [32]. 

The upper and lower indices are the samples in time where not only do we find a series of 

non-zero products and sums, however, these also define the length of the output [32] 

function,  [ ].  The output signal is comprised of all these non-zero products.  We can 

then determine the length of the output signal [35] by finding the length of the input 

signal and weighting function.  This relation [4] and [32] can be given as 

        

where   is the length of the input signal  [ ],   is the length of the weighting action 

signal  [   ], and   is the length of the output signal  [ ].  The length refers to the 

number of samples in each signal.  Thus, for example, if the length of  [ ] is 5, and the 

length of  [   ] is 6, then the length of  [ ] is         .  Given the length of 

the output signal we can determine given either the first or last instance of non-zero 

products the starting or ending time of convolution.  For example, examining the output 

signal's  [ ] sample, we can determine the starting time of convolution since one of the 

benefits of digital signal processing is the time-tagging of data elements not only of a 

pulse of energy, but even the behavior of that energy within the pulse.  Suppose we call 

the starting time      Knowing the length,  , of the output signal, we can then determine 

the time at the end of   by the notation    for sample  [ ], for example. 

4.2  Application 

     As an illustration of our discrete-time convolution, P.M. Woodward lays the 

groundwork for the cross-ambiguity function himself in this way in his seminal work on 

the cross-ambiguity function [47].  In the reference, Woodward introduces the 

convolution sum for two functions each with possibly a different probability distribution. 

The following illustrates our discussion. 

                                                   ∑             

 

where      and     , with      , are two independent random quantities.  The 

variable   is a fixed value, and the variables   and   are not fixed.  As such, the result,  , 

is influenced by an input,      which was weighted by the shifted quantity        and 

then summed over a range of values,  .  In his work, Woodward explains this in context 

of the statistical distributions of each function.  As such, we are interested in the finding 

the statistical distribution of the output      using the product rule [47].  The following 

example is based on Woodward’s statistical description of convolution [47].   He 

examines a set of eight pencils with the attributes of color and hardness. 
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A   A   A   B   B   B   B   C 

 J     J    K   J    J    J    K   K 

 

Where A is red, B is black, C is blue, J is hard, and K is soft.  If we were to choose a 

pencil based on color only and randomly chose A, the unconditional probability that we 

chose A was 
 

 
.  Having selected A, the probability that the pencil is hard is now 

 

 
 and the 

probability that it could be soft is 
 

 
.  Thus, these are the new conditional probabilities of 

hardness and softness both based upon having chosen a red pencil.  Assume, we have 

chosen a hard pencil, J.  We can now state, as does Woodward in familiar probability 

notation 

 

                  
 

 
   

 

 
  

 

 
 

 

Thus, Woodward is describing the probability distribution of a pencil having these 

attributes [47].   Regardless of the application, the convolution framework is the same.  

Convolution determines how much information the output receives from the input after 

the input has been weighted.   

 

4.3  Summary 

     In a broad, conceptual sense we will be investigating the value of the product and 

summation at each specific   to determine the point of most commonality across the 

length of the output function.  In our cross-ambiguity function analysis, we will be testing 

the time delays,  , across a period of time.  The   yielding the highest degree of 

commonality is usually the time delay of interest.  Moreover, the time period in our 

context will be just not confined by where non-zero products begin and end.  Based on 

our cross-ambiguity function’s operating framework it is expected to include times at 

which convolution products are zero.  In essence, the ambiguity function is searching for 

an optimum time delay value across a specific time range. 

 

5.  The Linear Time-Invariant System 

 

     Convolution is closely tied to the concept of the linear time-invariant (LTI) system.  It 

is a key intersection between the discussion of convolution and our signal processing 

context.  A linear time-invariant system is an ideal, input-output transformation model 

that has two characteristics.   
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      1. Linearity.  The system must provide for linearity between the input and output, 

such that their properties are: 

 

          a.  Scaling.  Where multiplying the input by a constant scalar yields the same 

corresponding scaling of the output [16] and [33] 

 

    [ ]      [ ]    [ ] 

 

          b. Additive Superposition.  Where summing of the input yields the same 

corresponding summing of the output 

 

    [ ]    [ ]      [ ]       [ ]     [ ]    [ ] 

 

      2.  Time-invariance.  Where a time shift [16] and [33] in the input yields a 

corresponding shift in the output 

 

   [   ]   [   ] 

 

The linear time-invariant system is fully described by a convolution sum.  In convolution, 

the idea of shifting a function over some time period to gain a historical perspective on 

the behavior of a system provides the best mathematical model to study linear time-

invariant systems since these systems preserve time shifts in their operations.  Further, we 

now introduce the idea of impulses and the impulse response to see direct applicability 

between a linear time-invariant system and convolution. 

 

5.1  Impulses and Impulse Response 

 

     Discrete-time signals are composed of, what are called, impulses (excitations) [1].  An 

impulse is a discrete spike of energy representing an ideal discrete signal sample and 

forms the basic elements for signal processing analysis.  The notation,  [ ], is used to 

describe this single pulse of energy.  And as such introduces Dirac's delta "improper" 

function defined [5] as 

 

 [ ]   {
          
                

    and 

 

∫         
 

  
. 

 

The Dirac delta function is not formally a function since at one point we have an 

undefined value, but its integral is one over a time period.  It is used in digital signal 
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processing to conveniently represent a single discrete sample of a signal in time.  As 

such, the Dirac function is conveniently used to model a single impulse of energy.  We 

will assume the Dirac "function" has a unit area of one by the definition above.  As such, 

we will call the input,  [ ], the unit impulse function and it is depicted in Figure 5.1 

below. 

 

 

                                                         δ[n] 

                                                              

                                                               1                                   

 

 

 

                                                                                                   

                                                           Figure 5.1 

 

 

 For clarification and completeness, some authors use the Kronecker Delta function [27] 

and [33] which is closely related to the Dirac function, and differs primarily in that the 

value of the function is "1" at     rather than " ".   

 

 

 [ ]   {
        
          

     

 

 

The Kronecker delta function can be used to represent the unit impulse function in the 

same way as Figure 5.1.   

 

We now introduce the idea of an impulse response which together with the unit impulse 

function forms the output of a system’s behavior.  Ultimately, knowing the output 

function and the impulse response of a system, one can readily determine the 

characteristics of the input function.   

 

An input-output diagram of a linear time-invariant system [35] is shown in Figure 5.2.  

The output [14], the impulse response which is usually denoted by  [ ][27], is the result 

of an input, the unit impulse  [ ], transformed by the linear time-invariant system by a 

scalar multiple, linear additive constant or time shifted value [1] and [32]. 
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                          [ ]                                                                   [ ] 

 

 

                                                          Figure 5.2 

 

    Graphically, this relationship may be visualized in Figure 5.3.  For illustration, the unit 

impulse has been multiplied (transformed by the LTI) by a scalar factor of 0.75.   The 

LTI is the transformation function,  . 

 

                 [ ]                                                                                [ ] 

                                                              

                     1                                    LTI =                          

                                                                                                      0.75                                                                                   

                                                                                

                                                                                                                                      

                                                         Figure 5.3 

and mathematically as  

   [ ]   [ ] 

The impulse response,  [ ], in Figure 5.3 is a simple arbitrary representative 

transformation of the unit impulse by the linear time-invariant system.  The impulse 

response of the system is the output that results in response to a unit impulse input [32].  

As stated above, knowing the impulse response  [ ], you can fully characterize the entire 

linear time-invariant system.  The linear time invariant system can now be used to 

construct a discrete-time sequence of signal samples.  Taking  [ ] as my output function, 

one can construct it [1] and [27] by the following manner 

 [ ]   ∑  [ ] [   ]

 

     

 

This is exactly the same form of the discrete-time convolution formula introduced earlier 

representing the product and then sum of an individual signal sample,  .  To demonstrate 

[32] how a sequence of discrete time samples in the output is represented by a sequence 

of weighted and shifted unit impulses the following is illustrated in Figure 5.4. 

 

Linear Time-

Invariant 

System 

System 
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                                                               [ ] 

4 

3 

2 

1 

        -3      -2     -1      0       1      2      3      

    Figure 5.4 

     Figure 5.4 represents the output of a discrete time signal comprised of specific 

samples of   at 0, 1, 2 and 3 each with their own arbitrarily chosen magnitudes.  Each of 

these samples of   can be represented by the product of a unit impulse by a weighted 

function.  In the following demonstration we compose an  [ ] sequence as seen in Figure 

5.4 using unit impulses.  Figures 5.5 to 5.8 represent the incremental building of the 

output signal as the delta function is shifted and scaled. 

for     

 

 [ ]   ∑  [ ] [   ]   [ ] [   ]

 

    

 

                                                        [ ] 

                                                        

                                                      

 

                                                              [ ] 

4 

3 

2 

1 

        -3      -2     -1      0       1      2      3      

    Figure 5.5 



 

12 
 

for     

 

 [ ]   ∑  [ ] [   ]   [ ] [   ]

 

    

 

                                                        [ ] 

                                                        

                                                      

                                                             [ ] 

4 

3 

2 

1 

        -3      -2     -1      0       1      2      3      

    Figure 5.6 

 

 

for     

 

 [ ]   ∑  [ ] [   ]   [ ] [   ]

 

    

 

                                                       [ ] 
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                                                             [ ] 

4 

3 

2 

1 

        -3      -2     -1      0       1      2      3      

    Figure 5.7 

for     

 

 [ ]   ∑  [ ] [   ]   [ ] [   ]

 

    

 

                                                        [ ] 

                                                        

                                                      

 

                                                                [ ] 

4 

3 

2 

1 

        -3      -2     -1      0       1      2      3      

    Figure 5.8 

 

 

     We can see that  [ ] provides the scaling and   provides the unit impulse and time 

shift for each,  .  Superimposing these four graphs over each other reconstitutes x[n] in 

Figure 5.4.  Again, notice that in each specific sample   for Figures 5.5 to 5.8, there has 

been a corresponding shift of Dirac's delta function to the right for each signal sample,  .  
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Thus, we have featured one of the most important elements of the convolution process, 

the time shift.  Here we are investigating the history of the signal sample from     to 

    in constituting an entire sequence of discrete signal samples.  Mathematically, the 

convolved output signal,  [ ], can be written [32], for all   in this case, as 

 

     [ ]   [ ]   [ ] [ ]   [ ] [   ]   [ ] [   ]   [ ] [   ] 

 

                                        [ ]   [ ]   [ ]   [ ]  

 

Thus, convolution can be used as a tool to construct a signal from a series of weighted 

and time-shifted values.  In his book, Bracewell best describes this action as a 

"superposition of characteristic contributions" [5] where infinitesimal contributions from 

approximating rectangles of a function are added in overlapping fashion revealing a final 

superimposed product representing the convolution of the two functions. 

     

6.  The Basic Convolution System 

 

    In this next section, we use  [ ] as an example of an input signal into a LTI system.  

Figure 6.1 shows this general transformation system [35].  The input signal   [ ] is 

characterized by the impulse response,  [ ], yielding the output signal  [ ].   

 

 

   

                          [ ]                                                                    [ ] 

 

 

                                                          Figure 6.1 

 

      This relationship can be expressed as 

 

   [ ]   [ ] 

where the transformation function   is created by  [ ]  the impulse response.  Here a 

more complete picture of discrete-time convolution is presented.  We are now expressing 

our output signal,  [ ], in terms of two functions  [ ] and  [ ]    As presented earlier, 

the full discrete-time convolution formula is 

     [ ]   [ ]   ∑  [ ] [   ]

 

     

 

 [ ] 

Linear Time-
Invariant System 
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The input signal  [ ] is now represented by  [ ].  The impulse response of the linear 

time-invariant system,  [ ] is now represented by  [   ] with a time-shift of   since 

the system is defined as time-invariant.  The  [ ] represents one signal sample composed 

of the products and sums of  th samples from  [ ] and  [ ].  Reference [32] provides an 

excellent algorithmic description of the discrete-time convolution process and is 

presented here with modification.  The purpose of this step-by-step analysis is to 

demonstrate the product and sum actions of convolution and enable the reader gain better 

understanding through the exercise provided in the following section. 

Discrete-Time Convolution Steps 

                               1.  Time shift  [ ] by   to form  [   ] (causes folding) 

                               2.  Multiply  [ ] and  [   ] for all values of   

                               3.  Sum all products  [ ] [   ] for all   to find  [ ] 

     The idea of time reversal and folding will become clearer as we construct the output 

signal,  [ ], sample-by-sample from the input signal and impulse response of the system.  

It can be discerned through the process of constructing each  -by-  sample of the output 

signal by the     subtraction and indexing by   up to   causing the  [ ] values to be 

multiplied and summed in reverse order.  This is what is meant by examining the 

historical behavior of the system. 

 

6.1  Software Tools Demonstration 

     The aforementioned algorithm can be demonstrated neatly using software tools.  First, 

the algorithm will be instantiated in Excel, and then illustrated using MATLAB.  Excel is 

a powerful spreadsheet program used in solving engineering and mathematical problems.  

I will demonstrate discrete convolution two ways in Excel.   

The first employed is a straightforward sum and product statement combined with careful 

placement of  [ ] using the set of magnitudes representing the amplitude of each sample 

{1, 2, 3, 4} and  [ ] using the set of magnitudes {2, 1, 4, 3} values within the 

spreadsheet.  The benefit of this approach is its simplicity.  Looking at the input data and 

the resulting  [ ] values lends itself to a clear, but still general understanding of the 

process.  The Excel SUMPRODUCT command is used, and as this case is relatively 

simple the specific command, input data, and output data are presented here.  The Excel 

command used is SUMPRODUCT(A$2:A$13,B2:B13) where the A – values represent 

one signal (or the input signal  [ ]) and the B – values represent the other signal (or the 

impulse response  [   ]).  As indicated the  [ ] values are fixed and the   [   ] 
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values are variable, see Figure 6.2 below.  The  [ ] values were produced with the 

SUMPRODUCT command.  As you can see from the data, the signals are given some 

arbitrary spacing between each other, and they include zeroes to indicate they are not 

only a finite sequence – see Section 4.1, but to also provide nulls in the SUMPRODUCT 

to produce the output as necessary.  Notice that  [ ], is the fixed signal, and that  [ ] has 

been flipped and shifted to become  [   ].  We can visualize the algorithm convolving 

the signals as we inspect the two Excel columns seeing the two finite data sets 

approaching each other as depicted in Figure 6.2 below. 

 

                                           

Figure 6.2 

 

The  [ ] values in Figure 6.2 are the set of magnitudes representing the amplitude of 

each sample {2, 5, 12, 22, 22, 25, 12}.   

The second application of an Excel spreadsheet solution is provided by reference [12].  

The same input signal vectors will be used as in the previous example.  The Convolution 

Table of Two Sequences, Figure 6.3, follows the same form as [12].  The table clearly 

demonstrates the shifting of the impulse response signal  [ ] and the creation of  [ ].  

The  [ ] [   ] computations are the product of those two individual factors 

referenced from the  [   ] row and  [ ] column figures where numerical flipping of 

the impulse response signal is affected.  The summation of the individual output signal 

samples are recorded in the  [ ] row. 

x(n) h(n) y(n)

0 0 0

4 0 0

3 0 0

2 0 2

1 0 5

0 0 12

0 0 22

0 2 22

0 1 25

0 4 12

0 3 0

0 0 0
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Figure 6.3 

The product rows of  [ ] [   ] demonstrate with unique clarity how the sum of each 

product occurs for each of the output signal’s sample in the respective vertical column.  

The products for each sample are added vertically.  The increasing progression, peaking, 

and then decrease in the magnitude of the output signal’s amplitudes is especially 

instructive.   

The second way in which the discrete-time convolution algorithm will be demonstrated is 

using MATLAB.  MATLAB is used extensively in this thesis, and also provides a clear 

description of the discrete-time convolution process within its own programming syntax.  

Further, MATLAB will provide the computations for continuous convolution in later 

sections and this demonstration provides a convenient introduction.  Also, MATLAB is a 

fourth-generation programming language for numerical computation and Figure 6.4 

instantiates the commands of the discrete-time convolution process in a MATLAB script 

[9] with remarks - %.  The same signal vectors defined in the two Excel exercises are 

used here as well. 

x = [1 2 3 4];   % input signal x[n] 

t1 = length(x); % length of x[n] 

h = [2 1 4 3];   % impulse response h[n] 

t2 = length(h); % length of h[n] 

y = conv(x,h); % convolution of the two signals 

t = 1 : 1: t1 + t2 – 1;  % length of y[n] 

y  % display sequence of output signal sample magnitudes 

y = 

2        5      12      22      2      25      12 

 

Figure 6.4 

Convolution Table of Two Sequences

First Sequence: x(n)=[1,2,3,4][1,2,3,4]

Second Sequence: h(n)=[2,1,4,3]

n 0 1 2 3 4 5 6 k x(k)

h(n) 2 1 4 3 0 1

h(n-1) 2 1 4 3 1 2

h(n-2) 2 1 4 3 2 3

h(n-3) 2 1 4 3 3 4

x(0)h(n) 2 1 4 3 0 0 0

x(1)h(n-1) 0 4 2 8 6 0 0

x(2)h(n-2) 0 0 6 3 12 9 0

x(3)h(n-3) 0 0 0 8 4 16 12

y(n) 2 5 12 22 22 25 12
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The MATLAB code, like the Excel demonstrations, illustrates not only the simplicity of 

defining our signals as simple vectors, however, the length of each signal is easily 

instantiated and used to compute the length of the output signal  [ ].  As we introduced 

in Section 4.1, the length of the output signal is M + N -1.  In this current MATLAB case 

[9] t1 = M, t2 = N, and we can see the length is seven samples.  Even in MATLAB, the 

process of computing the output signal is clear and pre-packaged as its own command 

“conv”.  As we discuss continuous convolution, this command will also be used with 

some important additions. 

 

7.  Discrete-Time Convolution Exercise 

 

     The purpose of the following exercise is to illustrate the basic concepts involved in 

convolution.  Like our introduction, it uses the discrete-time case as a demonstration.  We 

will begin by examining each sample of the output signal and determine how it was 

created using our algorithm as a basis.  By doing so, a clear pattern will appear that 

supports the idea of non-products, folding, time delay, and signal length.  We use as our 

input signal,  [ ], the previous output signal,  [ ] as demonstrated in the impulse 

function exercise.  Our pre-time-shifted impulse response signal,  [ ], is represented by 

Figure 7.1.  Notice the values of the (arbitrarily chosen) magnitudes at each sample of  

 [ ] takes on.  These will be multiplied into successive values of  [ ] as time shifts for 

 [ ].                                                      

                                                               [ ] 

4 

3 

2 

1 

        -3      -2     -1      0       1      2      3      

    Figure 7.1 

 

We begin by calculating the sample at the specific time (lower limit)     using the 

discrete time convolution formula and continue to an upper limit of     [27], [32] and 

[33]. 
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for       (the first instance of non-zero products) 

 [ ]   ∑  [ ] [   ]   [ ] [   ]

 

    

 

                                                 [ ] [ ]   (composed of one non-zero product) 

                                                    

                                                    (the amount of overlap at this sample) 

for       (the next non-zero product…) 

 [ ]   ∑   [ ] [   ]   [ ] [   ]   [ ] [   ]

 

    

 

                                                  [ ] [ ]   [ ] [ ]  (two non-zero products…) 

                                                          

                                                     (the amount of overlap at this sample…) 

for        

 [ ]   ∑  [ ] [   ]   [ ] [   ]   [ ] [   ]   [ ] [   ]

 

    

 

                                                 [ ] [ ]   [ ] [ ]   [ ] [ ]  

                                                            

                                                   

for     

 [ ]   ∑  [ ] [   ]   [ ] [   ]   [ ] [   ]   [ ] [   ]

 

    

 

                                                   [ ] [   ] 

                                                 [ ] [ ]   [ ] [ ]   [ ] [ ]   [ ] [ ] 
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for     

 [ ]   ∑  [ ] [   ]   [ ] [   ]   [ ] [   ]   [ ] [   ]

 

    

 

                                                   [ ] [   ]   [ ] [   ] 

                                                 [ ] [ ]   [ ] [ ]   [ ] [ ]   [ ] [ ]   [ ] [ ] 

                                                                     

                                                                             

for     

 [ ]   ∑  [ ] [   ]   [ ] [   ]   [ ] [   ]   [ ] [   ]

 

    

 

                                                   [ ] [   ]   [ ] [   ]   [ ] [   ] 

                                                 [ ] [ ]   [ ] [ ]   [ ] [ ]   [ ] [ ]   [ ] [ ] 

                                                  [ ] [ ] 

                                                                        

                                                   

for       (the last non-zero sample) 

 [ ]   ∑  [ ] [   ]   [ ] [   ]   [ ] [   ]   [ ] [   ]

 

    

 

                                                   [ ] [   ]   [ ] [   ]   [ ] [   ] 

                                                  [ ] [   ] 

                                                 [ ] [ ]   [ ] [ ]   [ ] [ ]   [ ] [ ]   [ ] [ ] 

                                                  [ ] [ ]   [ ] [ ] 
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Thus, the formula reveals that convolution is a progression of sequential multiplication 

and summation [1].  Looking more closely at the figures, we can see a pattern of shifting 

and consequential overlap occurring that reflects the weighting of the input by the 

impulse response signal [32].  For those elements outside the construct of the input signal 

or impulse response a padding factor of zero is given since multiplying by nothing is 

equivalent to multiplying by zero.  By eliminating the highlighted zero products from the 

calculations, let us simplify the above for visualization purposes. 

 

 [ ]   [ ] [ ] 

 [ ]   [ ] [ ]   [ ] [ ] 

 [ ]   [ ] [ ]   [ ] [ ]   [ ] [ ] 

 [ ]   [ ] [ ]   [ ] [ ]   [ ] [ ]   [ ] [ ] 

 [ ]   [ ] [ ]   [ ] [ ]   [ ] [ ]   [ ] [ ]   [ ] [ ] 

 [ ]   [ ] [ ]   [ ] [ ]   [ ] [ ]   [ ] [ ]   [ ] [ ]   [ ] [ ] 

 [ ]   [ ] [ ]   [ ] [ ]   [ ] [ ]   [ ] [ ]   [ ] [ ]   [ ] [ ]   [ ] [ ] 

 

These equations simplify as the following 

 [ ]   [ ] [ ] 

 [ ]   [ ] [ ]   [ ] [ ] 

 [ ]   [ ] [ ]   [ ] [ ]   [ ] [ ] 

 [ ]   [ ] [ ]   [ ] [ ]   [ ] [ ]   [ ] [ ] 

 [ ]                         [ ] [ ]   [ ] [ ]   [ ] [ ] 

 [ ]                                               [ ] [ ]   [ ] [ ] 

 [ ]                                                                     [ ] [ ] 

The purpose of this is to demonstrate folding or time reversal.  The shifting of the 

impulse response values by h[n-k] causes a reversal effect of the those values as can be 

discerned by examining the make-up of each output y[n].  For example, for y[1] the first 

product includes h[1] then the next product is h[0].  For y[2], the first product has the 

factor h[2], the second factor h[1] and the third factor h[0].  This process of reversal, 
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sometimes called “folding” lends itself to visualizing convolution in a more intuitive 

way.  Figure 7.2 illustrates the folding [2] of the n values across the h[n] axis, where h[n] 

= h[-n] is a symmetric and even function [37]. 

                                                                  

                                                                 [ ] 

                                                                      4 

                                                                      3 

                                                                      2 

                                                                      1  

                                  -3         -2          -1          0         1           2            3               

 

 

Figure 7.2 

 The following Figures 7.3 to 7.9 represent the visual construction to our detailed discrete 

calculations.  One can readily see that as the plots progress the result of the sequential 

products and sums become apparent.  

 

for                                                                 [ ]            

                                                                                10 

                              4                                                 8 

                              3                                                 6 

                              2                                                 4 

                              1                                                 2 

     -3      -2     -1      0       1      2      3                          0      1      2     3     4     5     6     7    

       amount of overlap 

Figure 7.3 
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  for                                                                 [ ]            

                                                                                10 

                              4                                                 8 

                              3                                                 6 

                              2                                                 4 

                              1                                                 2 

     -3      -2     -1      0       1      2      3                          0      1      2     3     4     5     6     7    

           amount of overlap 

Figure 7.4 

 

 

 

 

  for                                                                [ ] 

                                                                                12            

                                                                                10 

                              4                                                 8 

                              3                                                 6 

                              2                                                 4 

                              1                                                 2 

     -3      -2     -1      0       1      2      3                          0      1      2     3     4     5     6     7    

                amount of overlap 

Figure 7.5 
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 for                                                                 [ ] 

                                                                               24            

                                                                               20 

                              4                                               16 

                              3                                               12 

                              2                                                 8 

                              1                                                 4 

     -3      -2     -1      0       1      2      3                          0      1      2     3     4     5     6     7    

                    amount of overlap 

Figure 7.6 

 

 

 

 for                                                                 [ ] 

                                                                               24            

                                                                               20 

                     4                                                        16 

                     3                                                        12 

                     2                                                          8 

                     1                                                          4 

     -2      -1      0      1       2      3      4                          0      1      2     3     4     5     6     7    

                                                amount of overlap 

Figure 7.7 
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 for                                                                 [ ] 

                                                                               24            

                                                                               20 

             4                                                                16 

             3                                                                12 

             2                                                                  8 

             1                                                                  4 

     -1       0      1      2       3      4      5                          0      1      2     3     4     5     6     7    

                                            amount of overlap 

Figure 7.8 

 

 

 

 

 for                                                                 [ ] 

                                                                               24            

                                                                               20 

    4                                                                         16 

    3                                                                         12 

    2                                                                           8 

    1                                                                           4 

      0       1      2      3       4      5      6                          0      1      2     3     4     5     6     7     

                                                      amount of overlap 

Figure 7.9 
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Notice  [ ] in Figure 7.9 and our historical discussion in Section 3.2.  The final output 

signal can reveal much information about the entire system.  For our discussion of the 

cross-ambiguity function, the peak in our convolution result tells us much about what 

components constitute this particular signal sample.  The peak represents an optimum 

combination of events in our case revealing the specific time shift involved in this peak. 

 

8.  Continuous-Time Convolution 

 

     This discrete case extends to continuous intervals by the real convolution integral.  We 

now present the continuous convolution operation in its familiar form [5] 

 

                                         ∫             
 

  
 

 

where the symbol   denotes the convolution operator, and      and        are two 

independent random quantities.  The variable   is a fixed value, and the variable   is the 

integration variable.  As such, the result,           , is influenced by an input,      

which was weighted (multiplied) by the quantity        and then summed over the 

entire real number line.   However, we will derive the continuous convolution integral 

from the discrete-time convolution expression. 

 

Note that we can approximate the integral of some function      by its discrete 

counterpart 

 

∫            
   

∑       

 

   

 

 

 

 

where    represents the width of the approximating rectangle [37].  To this end the 

following illustration, Figure 8.1, is presented [28] and [39]. 

 

                                   

                                                

                                                                                                                           

 

 

                                                                                                               

                                                                                                                              

                                                   0                                     u                            

 

Figure 8.1 
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We see that we can approximate the area under the curve which represents the continuous 

signal function      by rectangles.  As we increase the number of rectangles the 

approximation becomes more precise.  At this point, we reintroduce the right hand side to 

be our discrete time convolution formula. 

 

∑  [ ] [   ]

 

     

 

Letting         [  ] [    ]  and letting          we can rewrite the discrete time 

convolution formula as a limit [3] and [28]. 

   
   

∑ [  ] [    ]    

 

   

 

As we take the limit, this yields our real convolution integral [28] 

 

∫             
 

  

 

 

 

8.1 Properties of Convolution 

 

     Convolution has many important properties that ultimately affect how the cross-

ambiguity function is defined.  One of the properties of convolution is that it is 

commutative [16], [17], [27] and [33], 

 

                                                            

 

or this property may also be written as 

 

                             ∫               
 

  
∫             

 

  
 

 

The commutative property accounts for why the convolution integral is written 

differently from author-to-author.  The commutative property states that the order in 

which the functions occur in the operation do not change the result.  As stated in [35], the 

convolution integral enjoys this property as a result of it being reversible.  We will 

discuss later, and in more depth, this idea of reversibility. 

 

 



 

28 
 

The second property of convolution is that it is associative [4], [16], [17] and [27] such 

that, 

                                                           

 

The associative property states that the functions being convolved may be grouped 

differently if their sequence remains unchanged.  The third property of convolution is that 

it is distributive [4], [16] and [27], 

 

                                                             

 

The distributive property states that multiplication of the function can be handed over 

addition.  The fourth property of convolution is its impulse property [31], 

 

      

 

This property states that when a signal is convolved with the Dirac function we retain the 

original signal function.  The final property of convolution is multilinearity [30], 

 

                     

 

  These properties represent the set of algebraic functions of convolution called   - 

algebra.  With these basic properties defined we can proceed to an analysis of continuous 

convolution using the following RCI as our standard form. 

 

         ∫   𝜏     𝜏  𝜏
 

  

 

 

Where the function,  , will be one signal, and  , will be another signal.  The integration 

variable is  , and 𝜏 will provide for the indexing through the interval.  We switch to these 

variables since as we approach discussing the cross-ambiguity function specifically, time 

will become an even more important factor in describing its functions.  In sum, the space 

of functions together with the convolution operator is an algebraic space. 

 

8.2 Continuous and Discrete Convolution Compared 

 

     Given our extensive discussion of discrete-time convolution, the continuous 

convolution offers a direct parallel to the basic concepts presented in the discrete case.  

First and foremost, of course, our RCI performs its superposition across now an infinite 

number of overlapping combinations.  Secondly, the upper and lower indices, as 

discussed in Section 4.1, translate well into the limits of integration.  In our case the 
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lower limit of integration is determined as the MAX{left limit of   𝜏 , left limit of 

    𝜏 } and the upper limit of integration is determined as MIN{right limit of   𝜏 , 

right limit of     𝜏 }[3].  Finally, as discussed in Section 7, the process of Faltung, i.e. 

folding or flipping of the signal, is preserved. 

 

8.3  Continuous Convolution Exercise 

 

     Like the discrete time case in Section 7, the purpose of the following exercise is to 

illustrate the basic concepts involved in continuous convolution.  There will be two 

different demonstrations using different signals in order to introduce important concepts 

concerning the cross ambiguity function.  Analyzing the shape of the resulting signal is 

essential in deriving important features to determine information such as detection and 

location.  Thus, we will be interested in items such as peaks, if any, in the resulting 

signal, clusters of peaks, and the spread around the peaks.  The following exercise is 

limited to the time domain, so our results are bounded in simple two dimensional plots of 

the data.  As we introduce the frequency component into our framework, the discussion 

will include three dimensional outputs. 

 

 

8.4  Continuous Convolution Exercise – Signal Set One 

 

     The purpose in choosing the particular signal set in this section is to introduce and 

demonstrate the exponential factor in the convolution process.  The cross-ambiguity 

function makes particular use of the exponential in its calculations albeit principally for 

the frequency off-set.  Furthermore, the exponential term in our case also makes use of 

“  ” as its exponent.  In the demonstration we will also introduce the rectangular pulse 

which this thesis makes its basic signal form in its survey of the cross-ambiguity 

function. 

 

The first signal of this section’s signal set is the truncated exponential function [5] 

defined as 

 

      {
           
              

      

 

     The graph of this function is given as Figure 8.2. 
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Figure 8.2 

 

 

     The second signal is the rectangular pulse [5] defined as 

 

      {
               

 

 

               
 

 

      

 

      

The graph of this function is given as Figure 8.3. 
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Figure 8.3 

 

MATLAB also defines the rectangular pulse as in [5].  Three cases will now be presented 

to establish and present the limits of integration, ranges of overlap, and the resulting 

functions in each case that, when combined - usually in a piecewise fashion, composite 

the output signal  [ ].   
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Case I:     The range for the shift of   is        
 

 
   

 

Figure 8.4 

Notice in Figure 8.4, the signal functions do not overlap.  Since       is defined as zero 

for this range we have 

              ∫   𝜏     𝜏  𝜏
 

  

  

∫           𝜏
 

  

  

∫    𝜏
 

  

   

Note that the definite integral of zero is zero.  The purpose of the integral is to find the 

area under the curve of the convolution function,   𝜏     𝜏 .  Since the function itself 

is zero, the corresponding area under this curve is zero.   This is not the same as taking 

the anti-derivative or indefinite integral of the function, 0, per the Fundamental Theorem 

of Calculus which would yield a constant since the derivative of a constant is zero [22]. 
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Case II:    The range for the shift of   is      
 

 
     

 

 
  

 

Figure 8.5 

Notice in Figure 8.5, the signal functions do overlap.  Both functions are defined for this 

range, so we have 

              ∫   𝜏     𝜏  𝜏
 

  

  

∫           𝜏   
 

 
 
 

 

∫        𝜏   
 

 
 
 

 

∫      𝜏   
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∫       𝜏   
 

 
 
 

 

   ∫    𝜏   
 

 
 
 

 

             
 
   

          
 
   

        
 
   

       
 
  

As we shall see from the output from convolution graph, the amount of overlap will reach 

a peak at the upper limits of integration. 

 

Case III:    The range for the shift of   is     
 

 
     

 

Figure 8.6 
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Notice in Figure 8.6, the signal functions do overlap.       extends to    and so 

overlaps across the width of the rectangular pulse,   𝜏 .  So the limits of integration are  

– 
 

 
      

 

 
.   Both functions are defined for this overlap. We have the same integration 

steps as in Case II, however, the resulting function is now evaluated at Case III’s 

particular limits of integration. 

    
 
         

 
   

   ( 
 

     
 

 )     

          

Notice from the output of convolution, that as   extends to   , the amount of overlap 

within the limits of integration tapers-off significantly from the peak of integration 

identified in Case II. 

 

The Output Signal - y(t) 

 

Combining the resulting convolution products from each of the three aforementioned 

cases defines the output signal across all ranges.  The resulting piecewise function is 
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Figure 8.7 represents the piecewise signal function.  In the real world, the signal would 

not be infinitely long to the right. Given power concerns and the few, if any, applications 

requiring a pseudo-infinitely long transmission, the signal would be terminated at some 

time,  . 
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Figure 8.7 

The MATLAB code is provided in Appendix One and is a heavily modified version of 

[2]. 

 

 

8.5 Continuous Convolution Exercise – Signal Set Two 

 

     The purpose in choosing the particular signal set in this section is to introduce and 

demonstrate a real-world model of two time domain rectangular pulses convolved into 

one output signal.  This thesis will then build upon this model of two rectangular radar 

pulses by introducing it into cross-ambiguity function calculations as well as take a 

particular real world signal and convolve it.  The cross-ambiguity function is used 

frequently in radar detection, location and characterization applications.  Both rectangular 

pulse functions      and      in this example are defined as     .  The purpose of this is 

to also introduce a set of concepts which will be explained in detail later in the thesis.  

These concepts involve various types of correlation, such as auto-correlation which this 

example partially illustrates. 
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Case I:     The range for the shift of   is        
 

 
   

 

 
Figure 8.8 

 

Notice in Figure 8.8, the signal functions do not overlap.        is not defined over this 

range, and for the reasons cited in Case I of the previous section, the convolution is zero. 

                ∫    𝜏      𝜏  𝜏
 

  

   

 

Case II:    The range for the shift of   is      
 

 
     

 

 
  

Notice for this Case II, the impulse signal function is defined at a specific time.  It does 

not extend to    as the truncated pulse function did in Signal Set One.   
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Figure 8.9 

 

Notice in Figure 8.9, the signal functions do overlap.  The limits of integration are from 

 
 

 
 to  , so we have 

                ∫    𝜏      𝜏  𝜏
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Case III:    The range for the shift of   is     
 

 
     

 

 
  

 

Figure 8.10 

Notice in Figure 8.10, the signal functions do overlap.  The limits of integration are from 

    to 
 

 
, so we have 
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As we shall see from the output from convolution graph, the amount of overlap will reach 

a peak at the upper limits of integration. 

 

Case IV:    The range for the shift of   is     
 

 
     

 
 

Figure 8.11 

 

Notice in Figure 8.11, the signal functions do overlap, and their convolution product is 

zero. 

The Output Signal - y(t) 

Combining the resulting convolution products from each of the four aforementioned 

cases defines the output signal across all ranges.  The resulting piecewise function is 
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Figure 8.12 illustrates the piecewise signal function.  In the real world, the signal would, 

like the input signals, be somewhat rounded at the “kinks” since all transmission devices 

have small rise and fall times as they produce the power to generate the signal. 

 

 
Figure 8.12 

 

The most important feature, like that of Signal Set One, is the central peak formed by the 

convolution.  Notice the peak we can determine the time of the peak by looking at the 

graph and see that it is  
 

 
.  By inspecting such features we can draw direct inferences 

about the possible location of the signal.  The cross-ambiguity function uses just this sort 

of time domain inference when calculating two pulse radar signals presumably from the 
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same emitter.  The MATLAB code for this convolution is provided in Appendix One and 

is a heavily modified version of [2]. 

 

8.6  Summary 

 

     Discrete and continuous time convolutions have been discussed and illustrated in 

mathematical depth.  The main mathematical feature developed has been the idea of 

finding a product and summing the results over a defined range producing a series of 

magnitudes in the time domain.  These magnitudes appear to have a pattern chiefly 

among the peak at which they converge.  MATLAB has also been introduced to develop 

these concepts and will continue to be used.  The concept that will be used throughout the 

thesis in modeling further environs is the processing of two, apparently similar and 

possibly the same, pulses from an emitter.  The next section extends to the next 

dimension, the frequency domain, of the discussion further building in the convolution of 

not only a time component, but frequency one as well. 

 

9.  The Frequency Dimension 

 

    The time domain convolution aspects of the cross-ambiguity function have been 

thoroughly explored.  The sum product of the magnitude of individual signals samples 

between two time-shifted signals has been demonstrated to yield an output signal.  There 

is another aspect of the cross-ambiguity function that exploits another physical feature in 

our signal set in addition to the time delay, 𝜏, and that is, 𝜈, the frequency off-set or 

Doppler shift.  The frequency off-set is contained within the frequency domain of the 

signal set.  Notice in the cross-ambiguity function [36] below 

 

                                         ∫   𝜏      𝜏        𝜏
 

  
 

 

there is an exponential factor        and   is the imaginary unit √  .  The first response 

upon inspecting the formula is, “Where did it come from?”.  The response lies within the 

frequency domain and how signals in that domain are represented.  This thesis will 

explain it mathematically. 

 

9.1  Frequency Off-set 

 

       The frequency off-set variable represents the Doppler shift.  The Doppler shift is the 

measured frequency change between a moving transmitter or receiver, or both.  A 

stationary transmitter, for example, transmits a signal on a certain frequency.  A moving 

receiver will perceive that transmission at a slightly different frequency due to wave 
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compression or elongation.  Figure 9.1 depicts the notion of a receiver moving away from 

a Stationary Transmitter. 

 

 

                 
     Moving                                               Stationary                                              Stationary 

    Receiver                                             Transmitter                                               Receiver 

 

Figure 9.1 

 

 

The Stationary Transmitter emits a signal at a certain frequency.  The Stationary Receiver 

will receive the signal at the same frequency since there is no relative movement between 

them.  The Moving Emitter is moving away from the Stationary Transmitter at a certain 

constant speed.  The Moving Receiver perceives the captured frequency at a slightly 

different frequency because of relative motion between the two. In this particular case, 

the Moving Receiver is moving away from the Stationary Transmitter so the frequency at 

which the Moving Receiver collects the signal is lower than the actual transmitted 

frequency.  This is because the Moving Receiver’s additional radial velocity away from 

the Stationary Transmitter induces a longer perceived wavelength and therefore lower 

frequency at the Moving Receiver.  If the Moving Receiver was moving toward the 

Transmitter it would likewise perceive the signal at a slightly higher frequency.  The 

Doppler Effect is a well-known physical feature and can be calculated quit easily for the 

Moving Receiver which is traversing away from the Stationary Transmitter 

 

 

        
   

 
 

 

 

 where     is the frequency observed at the Moving Receiver,     is the transmitted 

frequency and   is the speed of light, 299,792,458 m/s.  Assume, for example,     = 

9,345,000 Hertz and     = 13.4 m/s.  The change in frequency or frequency off-set,    = 

-0.417698 Hertz, almost half a cycle.  While a relatively slight decrease, the timing 

systems on board receivers are highly sensitive to these small changes and can register 

them with great accuracy.  Thus, 𝜈, in the cross-ambiguity function can be effectively 

measured and calculated in an overall product.  
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9.2  Euler’s Identity 

 

     One of the fundamental building blocks of signal processing is Euler’s identity which 

defines a relationship between the complex plane and sinusoids.  The identity can be used 

to express transformations of signals in both the time and frequency domains for many 

different purposes.  The Euler identity is extremely useful not only in its profound 

implications for expressing real signals using the complex plane, but its elegance and 

compactness make it computationally easy to use.  The Euler identities [37], [34] are 

 

 

                    

 

                     

 

 

where    √   and 𝜽 is the angle between the vector in the complex plane and the real 

axis.  A brief description of the complex plane and the derivation of Euler’s identity is 

instructive since it is key in understanding the calculations of the cross-ambiguity 

function. 

 

9.3  The Complex Plane 

 

      Complex numbers are important components in describing signals and signal 

processing systems.  They form not only the basis for the signal, but also mixing and 

analysis of these signals in complex signal processing systems.  It begins with a 

description of a complex number and its illustration in the complex plane.  The complex 

number,  , has two parts: a real part,  , and an imaginary part,   [37]. 

 

 

       

 

 

We can further express the real and imaginary parts as          and          as is 

frequently the case in the literature.  This relationship [7] can be plotted as Figure 9.2. 
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Figure 9.2 

 

There are several points about Figure 9.2 that are important to our discussion of the cross- 

ambiguity function.  The point,  , is not just a point, but can be looked upon as 

expressing a vector with magnitude,  .    will come to represent an important element 

in the signal function.  Here it is a convenient illustration for a magnitude, but in later 

sections it will become the signal envelope of a modulated signal, such as,     .  For 

now, as the excellent reference [23] instructs, we will call this a phasor in the both the 

mathematical and communications vernacular.  The phasor can rotate in either a counter-

clockwise or clockwise direction denoted by the imaginary unit,   or –  , respectively.  

In describing the 90 degree phase shift of the cosine sinusoid, these imaginary operators 

are employed and a rotation table is described in Table 9.1 for      .  Further 

discussion of phase shifting these signals is described in Section 9.6, Hilbert Transform. 

 

            

                                          

 

                        

                                          

 

Table 9.1 
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The rectangular form is the most usual form encountered.  The trigonometric form can be 

easily computed by noticing 

 

            and                   so, 

 

                          or, 

 

   [               ] 

 

The purpose here is to introduce the cosine and sine terms which are the traditional 

functions representing not just simple sinusoidal signals, but are the basic components of 

more complicated modulations. 

 

The trigonometric form is used frequently in signal processing as the quadrature 

description of a signal and the polar (exponential) form is also used frequently in signal 

processing.  Note the     term.  This is similar to the term demonstrated in the continuous 

convolution exercise for the truncated exponential and is also the term encountered in the 

cross-ambiguity function.  The polar form is used quite frequently given its elegant and 

ease of use in mathematics.  It is also used to describe, what this theses will present later, 

the analytic signal used in the cross-ambiguity function.   

 

9.4  Euler Identity Derivation 

 

     The Euler identities can be proved through the use of the Taylor Series polynomials.  

We start with the basic exponential form [37] 
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and put      so, 
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The alternating terms in the sequence reduce to the Taylor Series representations [37] for 

cosine and sine, since 

 

        ∑     
     

       

 

   

     
  

  
  

  

  
   

 

 

        ∑     
   

     

 

   

   
  

  
 

  

  
   

 

So the resulting Euler Identity is defined 

 

    ∑
   

 

 

   

                  

 

where 

     ∑
    

 

 

   

                 

 

is the negative (complex conjugate) of the basic identity.  By the setting these two 

formulas equal to each other we have 

 

        
         

 
 

 

         
         

  
 

 

The significance of this result cannot be overstated [23].  Real quantities, the         and 

       , can be expressed in complex exponential terms. Taking the basic identities for the 

        and         established in the equations immediately above, we substitute in the 

frequency and time domains 
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Like our previous statement, we can now extend our submission to the fact that real 

valued signals can be expressed as complex exponentials. These real world signals are 

comprised of these basic sine and cosine forms from not only simple sinusoidal signals, 

but more complicated modulations like the rectangular pulse which, as we will see, is 

comprised of the summation of many frequency components.  As such, the frequency 

domain will now be explored with detail. 

 

9.5  The Frequency Transform 

 

The frequency domain of a time domain signal can be expressed using the following 

frequency transform function – called the Fourier Transform [5], [18] 

 

         ∫            

 

  

   

 

where      is the time domain representation of a signal, and   is the frequency.  As an 

example, find         for 

 

                 
                 

 
 

 

using the aforementioned Euler identity for cosine.  Plugging into the Fourier Transform 

and integrating, we have 

    

  ∫
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∫                         

 

  

   

 

  
 

 
∫               

 

 
∫             

 

  

 

  

   

 

To simplify, notice the Fourier Transform of the Dirac Function [20] is 

 

      

   
  ∫      

 

  

   

 

  
 

 
         

 

 
         

 

  
 

 
         

 

 
        

 

Since the Dirac function is an even function [20], i.e. 

 

            

 

 

The result can be illustrated in Figure 9.3 where two individual frequency components 

are registered at frequencies     and      with a magnitude of  
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Figure 9.3 
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We extend the same computation to the sine function using the same Fourier Transform. 

 

                 
                 

  
 

 

using the aforementioned Euler identity for cosine.  Plugging into the Fourier Transform 

and integrating, we have 
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Notice, again, the Fourier Transform of the Dirac Function is 
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  ∫      

 

  

   

 

which is used again to simplify the subject equation. 

 

  
 

  
         

 

  
         

 

  
 

  
         

 

  
        

 

Also, again, notice that the Dirac function is an even function.  

 

 

Additionally, rationalizing the denominator using 

 

       

 

we have 

 

  
  

 
         

 

 
        

 

 

The result, like the cosine, can be illustrated as Figure 9.4. 
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Figure 9.4 
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Notice, much like the cosine illustration in Figure 9.3, there are two frequency 

components.  However, these are    out-of-phase from the cosine components.  Of 

importance, the above Fourier Transform process has produced both positive and 

negative frequencies – each symmetric about the power axis.  When the subject of the 

analytic signal is discussed, the negative frequency component will be suppressed using 

the Hilbert Transform.  This is key to developing the cross-ambiguity function. 
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Figure 9.5 

 

In Figure 9.5, sinusoidal signals [18] have only one spectral component at both positive 

and negative frequencies. This is to demonstrate a simple illustration of the time and 

frequency domain conversion. It is transmitting only one frequency,     as can be seen 

from the above figures, and this type of signal can be considered a tone.  Most signals, 

however, must carry much more information than a single tone.  A larger amount of 

information can be messaged across a band of frequencies called bandwidth.  For 

example, the rectangular pulse carries information across its width and its length [7], as 

previously defined, can be now thought in terms of bandwidth or pulse width as pictured 

in Figure 9.6.   
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Figure 9.6 
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This is called a passband signal [7] and has a both positive and negative frequency 

bandwidth.   A passband signal is creating by filtering the information through a process 

releasing only the required information onto a modulation carrier.  The passband signal is 

created by the following [13]. 

 

                             

 

The message portion [13] of the signal is       and is often called the envelope.  The 

modulation carrier which up-converts the lower frequency message envelope to suitable 

higher frequency transmission is                   where    is the center frequency and 

     is the phase of the signal.  The result is a modulated signal      .  The purpose of 

this short tutorial is to demonstrate that the cross-ambiguity function is developed from 

this form of signal, although in slightly different format as we shall demonstrate.  The 

slightly different format alluded to is called the analytic signal.  The analytic signal 

contains only positive frequency components unlike        which contains both positive 

and negative frequency components as previously illustrated in Figures 9.3, 9.4 and 9.5.  

And in developing the analytic signal, an important concept in signal processing must 

first be introduced and mathematically developed in order to fully understand the 

implications of using the analytic signal format.  The following discussion therefore 

introduces the Hilbert Transform which suppresses the negative frequency components in 

a signal leaving only the positive side. 

 

9.6  Hilbert Transform 

 

The Hilbert Transform is a linear time-invariant function defined as [21] 
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Due the Transform being an improper integral, the Cauchy Principal Value (CPV) of the 

Hilbert Transform is re-expressed [21] as 
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First, we will conduct a Hilbert Transform on the cosine signal where  

 

         (           ) and 𝜏       𝜏     𝜏  

 

Plugging the cosine signal into the Hilbert Transform, we have 

 

 [   (           )]   
 

 
∫

   (       𝜏       𝜏 )

     𝜏     𝜏 
 𝜏

 

  

 

 

Using the following trigonometric relationship to expand the transform [37], 

 

                                   =                            

 

and noticing that we can distribute and associate terms in the numerator as 
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                       𝜏     𝜏    

 

we have [26], 
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To make the integration easier for the sine part of the now-expanded transform, we make 

use of the relation [38], 

 

 

 
 ∫       

 

 

 

 

This equals 
 

 
 by the following. Given,  

 

∫       
 

 
  

 

use substitution where, 

 

        and          

 
 

 
∫     

 

 
 = 

 

 

 
    

 

Re-substituting and evaluating, we have 

 

  

 
      

 

and integrating from 0 to infinity 

 

 

 
 

 

We now continue to simplify the sine part of the Hilbert Transform since after expansion 

each sine and cosine part of the transform can be manipulated separately.  Then we will 

simplify the cosine part.  The above relation is now introduced into the sine part of the 

transform and since the sine function is an even function we can re-write the limits of 

integration at the same time [38] 
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  ∫ ∫                      (     𝜏     𝜏 ) 𝜏  

 

 

 

 

 

 

Using integration by parts for the inner integral, where 

 

∫         ∫     

 

and substituting [38] 

 

∫                      (     𝜏     𝜏 )  𝜏

 

 

 

 

the first step of the integration by parts process is assigning variables where   

                     and        (     𝜏     𝜏 )  𝜏, and  
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and substituting [38], we have 
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  ∫[    (      𝜏     𝜏 )][     (             )] 𝜏 
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The second step of integration by parts is assigning variables where 
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   and          (      𝜏     𝜏 ), and 
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and substituting, we have 

 
 

∫                     (     𝜏     𝜏 ) 𝜏 

     (             )    (      𝜏    𝜏 ) 

 [[    (             )][   (      𝜏     𝜏 )] 

  ∫[    (      𝜏     𝜏 )][       (             )]d𝜏] 
 

  

Further, simplifying [37] and [38] we have, 
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Evaluating the integral from 0 to infinity [38]  

 

 

     
 

 



 

58 
 

Placing this result back into the original double integral, we have [37], [38] and [44] the 

following which can be resolved by integration tables 

 

 ∫
 

    
              

 

 

   
 

 
    

 

 

For the cosine part of the Hilbert Transform, we realize  
   (             )

             
 is an odd 

function where              so the integral of this odd function  ∫       
 

  
.   

Even the phase components can be demonstrated to yield             by the 

complex plane in Figure 9.2.  Integration of this function is in Appendix 2. 

 

Finally, the results will be substituted into the original equation which is re-stated here. 
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Substituting in the aforementioned results we have, 
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Thus the Hilbert Transform shifts the phase of cosine to sine. 
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9.7  The Analytic Signal 

 

Since we have computed the Hilbert Transform we can now compute the analytic signal.   

The formula is in terms of the original signal and its Hilbert Transform [5] 

 

                   

 

Substituting, we have 

 

     (           )                      

 

Converting to complex exponential form 

 

  
                               

 
  

                               

  
 

 

  
                               

 
 

                               

 
 

 

  
                                                               

 
 

 

 
                             

 
 

 

                

 

Thus, the analytic signal preserves only the positive frequency component of the signal 

and has a magnitude of one.  No information is lost in this procedure, since the analytic 

signal maintains the carrier, amplitude and phase information of the signal, and is, 

therefore the preferred form in conducting computations. 

 

At this point, we can introduce the rectangular pulse function, into the three major 

elements of its transformation: as a modulated signal, one phase-shifted by the Hilbert 

Transform, and a signal with its negative frequency component suppressed – the analytic 

signal ready for further computation.  For our baseband message function     , we can 

determine its analytic signal function. 
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This analytic signal function is the function that we will use to compute the cross-

ambiguity function in Section 12.  The message and    components of the signal have 

been established whereby they can be further plugged-into the convolution integral.  The 

analytic signal format not only preserves frequency and phase information, but also 

makes the convolution algebraically easier to resolve as we will see in Section 12. 

  

10. From Convolution to Cross-Correlation 

 

     The convolution operator produced an output signal after an input signal was 

modulated by an impulse response in a linear time-invariant system.  Convolution 

determines how much information the output receives from the input after the input has 

been weighted.  Cross-correlation, on the other hand, is the processing of two similar 

signals [48] and determining how much they have in common.  While convolution is the 

mathematical foundation of the cross-ambiguity function, the particular implementation 

of the cross-ambiguity function is to determine not just the amount of overlap, as is the 

case of convolution, but more specifically, the degree of association between these two 

similar signals with a time delay. This is similar to a matched filter where a defined 

signal template is compared to a proposed signal with similar characteristics.  Thus, the 

“cross-“  in the cross-ambiguity function refers to the operation of cross-correlation.  The 

convolution and cross-correlation operations solve slightly different problems and are 

therefore mathematically different.  The major difference is that in cross-correlation there 

is no flipping of a signal, like the Faltung in convolution.  However, we can derive the 

cross-correlation function from that of convolution, as the following derivation presents.   

We start [46] by re-introducing the convolution integral 

 

 

         ∫   𝜏     𝜏  𝜏
 

  

 

 



 

61 
 

Given the relation for the cross-correlation operation denoted by “ ” and the “ ” in the 

superscript of the function        denotes [46] the complex conjugate of that function,  

although the derivation works for non-complex operations as well [48].  The complex 

conjugate will be discussed in more detail in the next section.  

 

                      

 

Substitute [46] into the convolution operation on the right hand side yielding 

 

         ∫     𝜏     𝜏  𝜏
 

  

 

 

Letting 𝜏    𝜏  and   𝜏     𝜏  [46] we have, 

 

         ∫    𝜏      𝜏     𝜏 
  

 

  

 

         ∫    𝜏      𝜏   𝜏 
 

  

 

 

Let 𝜏   𝜏, and therefore   𝜏    𝜏 [46], 

 

         ∫    𝜏     𝜏  𝜏
 

  

 

 

Thus, we now see the cross-correlation operation is an operation on two signals, whether 

they are real [48] or complex [46], separated by some time delay [46], and there is no 

longer any reversing of the signal. 

 

In a later section when we process a pair of similar rectangular pulse signals we will find 

that since       is an even function the convolution and cross-correlation functions have 

the same output [46] and this is given by the following relation [46] 

 

                  

 

 

11. Complex Conjugate 

 

The purpose of the complex conjugate in the cross-ambiguity function is ensure that if the 

envelope of a signal contains complex figures then there is a positive addition of phase 
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and amplitude information to the cross-correlation of the signal and avoid zero-averaging 

of the signal set.  Taking the complex conjugate has the effect of reversing the direction 

of rotation of the complex exponential. The complex conjugate can be taken on either 

signal in the cross-ambiguity function since both signals are required to produce the 

positive contribution of phase and amplitude information.  We demonstrate this using the 

following example.  Signal One is a simple signal with constant amplitude, and Signal 

Two is a similar signal with constant amplitude.  Each is represented by its exponential 

and trigonometric forms to illustrate the processing of the imaginary components. 

 

                                                          

 

 

                                                             

 

 

The signal plot for        and       is as in Figure 11.1 

 

 

 
Figure 11.1 
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We now multiply the two signals and take the complex conjugate of       

 as   
     where the “ ” is the complex conjugate notation for the signal.  In other words  

 

 

  
                                                        

 

 

Notice the imaginary components have been negated with a “-“.   Taking the product of 

the signals       and   
     

 

 

[                               ][                

                 ] 

 

 

                                                  

                                                    

 

 

                                        

 

 

  [                                     ] 

 

 

= 2 

 

 

Thus, the complex conjugate operation removes the imaginary components of the product 

leaving only positive contributions in both phase and amplitude by both signals which is 

the magnitude (the length).  In other words, the complex representations in the product 

produce  a real number.  The following Figures 11.2 and 11.3 demonstrate this positive 

contribution afforded by the complex conjugate.  The product of the signals by the 

complex conjugate enables one to compute the magnitude of the signal and thus the 

power it contains. 
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Figure 11.2 

 
Figure 11.3 
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12.  Compute the Cross-Ambiguity Function 

 

     The groundwork for the differing components underlying the cross-ambiguity function 

has been developed mathematically.  This section implements this development to 

present the final form of the cross-ambiguity function.  We begin by defining two 

different, but similar, signals in analytic signal format [49].  Signal       has a time delay 

of 𝜏  introduced into it.  Signal       is attributed with the complex conjugate notation.   

 

Let 

          𝜏   
            and 

  

       
            

 

The convolution integral is 

 

           ∫             
 

  

 

 

Substitute both signals into the convolution integral yielding 

 

           ∫      𝜏   
        

                   
 

  

 

 

Derive cross-correlation as in Section 10, 

 

  ∫        𝜏    
        

                   
 

  

 

 

  ∫    𝜏             
                   

 

  

 

 

   𝜏    

 

        

 

  ∫       
             

     𝜏           (        )     
  

 

 

 



 

66 
 

  ∫       
             

      𝜏   
               

 

  

 

 

𝜏     𝜏  

 

  ∫       
             

    𝜏              
 

  

 

 

 

  ∫       
                   

    𝜏                 
 

  

 

 

                 ∫       
         

    𝜏          
 

  

 

 

                 ∫       
                 

    𝜏   
 

  

 

 

                 ∫       
              

    𝜏   
 

  

 

 

Denote the apparent frequency difference between the two signals as 𝜈 

 

𝜈         

 

                 ∫       
       

    𝜏   
 

  

 

 

Denoting this by   𝜏 𝜈 , we have 

 

  𝜏 𝜈                  ∫        
    𝜏          

 

  

 

 

To find the peak power,    𝜏 𝜈  , that is indicative of the optimal solution between the 

time delay and frequency off-set, we take the absolute value of the equation by Parseval’s 

Theorem. 

 

   𝜏 𝜈   |                ∫        
    𝜏          

 

  

| 
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   𝜏 𝜈   |                | |∫        
    𝜏          

 

  

| 

 

Since 

 

      √       

 

We can simplify the term taken outside the integral 

 

 

|                |   |        ||       | 

 

                 𝜏            𝜏 ) 

 

           𝜏       and                𝜏 ) 

 

 

   √        𝜏             𝜏      

 

Likewise 

 

   √        𝜏            𝜏     

  

Finally, 

 

   𝜏 𝜈   |∫        
    𝜏          

 

  

| 

 

 

As indicated,   𝜏 𝜈  , is the peak (highest degree of similarity) of the cross-ambiguity 

function, as reference [47] states, “for a combined time and frequency shift”.  This new 

function permits computation of magnitudes at various time and frequency 

measurements.  The largest peak indicating that a particular pair of time-shifts and 

frequency off-sets produces a largest magnitude of the set of all pairs.  This allows the 

analyst to further infer important derived calculations like emitter location. 
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13.  Cross-Ambiguity Function Assessment of the Rectangular Pulse 

 

     In Section 12, we completed the development of the cross-ambiguity function.  The 

purpose of this section is to implement a specific signal set into the CAF and simplify it 

to its final form. For this specific application, the two similar signals under investigation 

will be normalized rectangular pulses.   They are the baseband message envelopes and 

can be substituted directly into the CAF.  As noted before, the rectangular pulse function 

is defined as 

 

 

      {
               

 

 

               
 

 

      

 

 

For the two normalized signals we define them as [43] 

 

 

       
 

√ 
 (

 

 
) 

 

  
    𝜏  

 

√ 
  (

  𝜏

 
) 

 

 

Substituting into the CAF, we have 

 

 

   𝜏 𝜈   |
 

 
∫  (

 

 
)  (

  𝜏

 
)          

 

  

| 

 

 

We now perform the integration in a similar manner as in Sections 8.4 and 8.5.  The 

limits of integration are from 
  

 
  to  

 

 
  𝜏    or   𝜏     as in Figure 13.1. 
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Figure 13.1 
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 |
 

 

 

   𝜈
[     

      

     
        ]| 

 

 |
 

 

 

   𝜈
[     

      

     
        

     

     
]| 

 

 |
 

     
| |

 

 

 

   𝜈
[                        ]| 

 

 |      | |
 

 

 

   𝜈
[                     ]| 

 

 

In the case 𝜏     we can write [6]   𝜏   𝜏, to obtain 

 

 |      | |
 

 

 

   𝜈
[                         ]| 

 

 

=|      | |
 

 
    𝜏  

                 

           
| 

 

 

The magnitude of the complex exponential |      |  is one as was previously developed 

in Section 12, thus 

 

   𝜏 𝜈   = |
 

 
    𝜏  

               

         
| 

 

 

Given the relation where         [44], the sine cardinal 

 

        

  
         

 

 

   𝜏 𝜈   = |
       

 
      𝜈    𝜏   | 
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For the limits of integration from 
 

 
  to  

  

 
  𝜏    or   𝜏    as in Figure 13.2. 

 

 
Figure 13.2 
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 |
 

 

 

   𝜈
[                        ]| 

 

 |
 

 

 

   𝜈
[             

      

     
]| 

 

 |
 

 

 

   𝜈
[     

     

     
        

      

     
]| 

 

 |
 

     
| |

 

 

 

   𝜈
[                        ]| 

 

 |      | |
 

 

 

   𝜈
[                     ]| 

 

In the case  𝜏     we can write [6]   𝜏    𝜏     or      𝜏   𝜏     

 

 |      | |
 

 

 

   𝜈
[                         ]| 

 

=|      | |
 

 
    𝜏  

                 

           
| 

 

Again, the magnitude of the complex exponential |      |  is one, imply that 

 

   𝜏 𝜈   =|
 

 
    𝜏  

               

         
| 

 

Given the relation that         [44] is the normalized sine cardinal 

 

        

  
         

 

This simplifies the subject expression, [43] as  

 

   𝜏 𝜈   = |
       

 
      𝜈    𝜏   | 

 

which is the same expression as for the first limits of integration. 
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Thus, for both limits of integration, we characterize the CAF as 

 

   𝜏 𝜈  = |
       

 
      𝜈    𝜏   | 

 

     There are two main features of the result.  One is the |
       

 
 | factor that produces the 

time domain aspect of the CAF.  The second feature is the        𝜈    𝜏     that 

produces the frequency domain dimension of the CAF.  Each feature can be demonstrated 

by setting 𝜏 and 𝜈 equal to zero in the CAF.  By setting the 𝜏    we can produce what is 

called the Doppler Cut giving us a view of the frequency domain produced by the sinc 

function.  Conversely, by setting 𝜈    we can produce what is called the Delay Cut.  

Both enable us to examine the process of the CAF in a clear two-dimensional fashion.   

     Using MATLAB, Figure 13.3 is the Doppler Cut view afforded by setting 𝜏   .  This 

means there is no time delay between two collectors receiving the purported similar 

signal.  This affords a straightforward analysis of the frequency off-set.  First we set 

𝜏    in the CAF 

 

     𝜈  = |
       

 
      𝜈    𝜏   |         𝜈      
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Notice that we have a simple view of the frequency off-set that tells us several things.  

The peak power occurs at a Doppler Shift of zero.   Off-peak values of amplitude occur at 

Doppler Shifts containing some values.  This means there is relative motion between 

three different entities: the two receivers and the transmitting source.  Power values are 

zero at the null crossings for integer multiples of the pulse’s bandwidth. 

 

Again using MATLAB, Figure 13.4 is the Delay Cut view afforded by setting  𝜈   .  

This means there is no frequency off-set between two collectors receiving the purported 

similar signal.  This affords a straightforward analysis of the time delay.  In this case, we 

set 𝜈    in the CAF 

 

   𝜏    = |
       

 
           𝜏   |  |

       

 
|   

 

 

 
Figure 13.4 

 

This figure should be a familiar form.  Given the cross-correlation of the two normalized 

rectangular pulses, the output yields a triangular function at a normalized peak power of 

one. 
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14.  A Practical Application 

  

     In this section, we will present a practical application of the cross-ambiguity function.  

We will introduce the parameters of a naval radar into the CAF and display it.  Also we 

will generate a “Doppler Cut” and a “Delay Cut” of the CAF to more closely examine its 

features.  The purpose of this is two-fold: it shows that real world numbers act according 

to our mathematical predictions as previously developed, and graphically shows the 

results of a zero time delay and a zero frequency off-set offering a practical view of the 

models presented in Section 13.  The second demonstration will be a sample calculation 

of a non-zero time delay and frequency off-set to illustrate that the combination of 

parameters yield power results that fall-off the peak of the zero-based figures. 

 

The operational scenario constructed here is a geometric search and rescue model of two 

low-altitude airborne collectors – unmanned air vehicles and a target carrying an actively 

transmitting AN/SPS-52.  The two collector architecture offers the opportunity to 

compare the reception of a likely similar radar pulse – the cross-correlation notion.  Thus, 

one collector will see the radar pulse as      and the other collector will see it as     

 𝜏 .  Recall, this is the signal processing definition used to develop the idea of cross-

correlation in Section 12.  Additionally, our operational scenario will have one collector 

moving with some relative velocity to the other collector thus providing the ability to 

measure the frequency of the received pulse at slightly different perceived frequencies.  

In others words, the framework allows us to develop a frequency off-set or Doppler 

figure, 𝜈, but the final Doppler figure will always be assumed in terms of the radial 

velocity referenced to the target transmitter.  In this scenario, the target will be assumed 

to be (relatively) stationary.   

 

The SPS-52 is a long range air search radar fitted on many (now older) US naval and 

Allied platforms [15].  Those radars with “long range” missions often had relatively large 

pulse widths (PW).  In this long range operation, the AN/SPS-52 transmitted with a 10 

microsecond pulse width and a (variable) 1000 pulses per second (PPS) pulse repetition 

frequency (PRF) or sometimes called the pulse repetition rate (PRR)[15].    The operating 

frequency,     will be 3000 MHz [15].  It will also be assumed that the two collectors are 

flying in such a position that the distance between the first collector and the target, and 

the distance between the second collector and the target will be different.  This allows the 

generation of the timed delay based on this difference.  Additionally, the collectors also 

have the ability to measure the pulse width, PRF and perceived frequency of the radar’s 

transmitted pulse.  Each collector and its geometry, induces slight measurement 

differences and errors.  This explains the idea of using cross-correlation for seemingly 

similar signals.   The operational geometry is shown in the following figure, Figure 14.1. 
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                                pulse wavefront,     𝜏      

 

 

 Collector One 

 

                                                     pulse wavefront,      

                                                                                                                     
                                                                                                               Transmitting Target 

 

                                   Collector Two 

 

 

 

Figure 14.1 

 

 

As seen in Figure 14.1 a single pulse wavefront impinges upon the two collectors are 

different times based on their relative distance.  For this problem, we will calculate the 

time delay, 𝜏, according to a straight left-to-right reference.  Thus, the distance between 

the two collectors will be 2000 meters,  .  The speed of light figure used in this 

calculation is 299,792, 458 meters per second,  . Using the relation 

 

 

𝜏   
 

 
 

 

 

we have, 

 

 

𝜏   
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For the frequency off-set we will use the relation in Section 9.1 to calculate,  

 

𝜈         
   

 
 

 

where    299,792,458 meters per second,      3000 MHz and      13.4 meters per 

second. The     has one collector moving at 13.4 meters per second faster than the 

second.  Also, the negative sign in front of the Doppler relation is now positive since we 

are assuming the collectors are moving towards the target.  Substituting, we have, 

 

𝜈                   
                      

                             
 

 

          Hz 

 

14.1  Results 

 

     Part one of the results is to present the ideal CAF.  Using MATLAB’s powerful 

ambgfun in the Phased Array System ToolBox, it is presented below as Figure 14.2. 

      

 
 

Figure 14.2 
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We see a distinctive peak at a time delay and Doppler shift of zero.  Falling off rapidly, 

representing infinite combinations of other time delays and Doppler shifts each 

corresponding to their own power values. 

 

Part one of the results also presents the Delay and Doppler Cut for the subject radar.  The 

Doppler Cut is presented first.  This assumes the time delay is zero.  Figure 14.3  below 

refers. 

 

 

 
Figure 14.3 

 

 

Like the analysis performed in Section 13, Figure 14.3 affords a look at the sinc function 

of the Doppler Shift.  The amplitude is one and each frequency null corresponds to the 

positive and negative of the bandwidth at integer intervals for every sidelobe.  As such, 

each lobe contains less and less power as predicted by the sinc function. 

 

 

-300 -200 -100 0 100 200 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Doppler f
d
 (kHz)

A
m

b
ig

u
it
y
 F

u
n
c
ti
o
n

Ambiguity Function, Zero Delay Cut

|(0,)|



 

79 
 

     The second view is the Delay Cut where it is assumed the Doppler Shift is zero.  This 

graphic is presented as Figure 14.4 below. 

 

 
Figure 14.4 

 

  This graphic was processed at the appropriate Nyquist rate for the given pulse width.  

We can see, like in Section 13, the delay is accounted for between the 10 microsecond 

bandwidth boundaries, both positive and negative.  The amplitude of the Doppler Cut is 

one. 

     The next validation of our model comes with substituting in the time delay and 

frequency offset into the CAF, and the evaluation.   
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This represents the power, in this combination, of time delay and frequency offset.  The 

point on the surface of the CAF representing the time delay, frequency off-set and power 

is illustrated in Figure 14.5 below. 

 

 
Figure 14.5 

 

14.2 Operational View of the CAF Features 

 

     The CAF has been exhaustively developed with precision and detail.  However, 

stepping back and seeing how these features of time delay, frequency offset and power fit 

take on physical meaning, in the overall operational picture, is especially instructive and 

brings to visual closure the work undertaken in this thesis.  We start by revisiting Figure 

14.1 and modify it to our purposes here as Figure 14.6 to illustrate at a higher level, the 

mathematical-architectural concepts that bridge the gap to geolocation.  The time delay 

and frequency off-set are not just a point, but an infinite amount of points.  The time 

delay, for example, is a number that represents the time difference that the pulse was 

received at the two collectors.  This time difference is referred to as the time difference of 

arrival (TDOA) and can be represented as a line that represents points on the ground that 

could be where the target transmitter is.  Likewise, the same view applies to the 
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frequency off-set or frequency difference of arrival (FDOA).  The large symmetric arcs in 

Figure 14.6 represent all the possible locations on the ground where the target transmitter 

could be transmitting [19].  Where the two difference of arrival lines intersect is the 

probable location of the target transmitter as demonstrated by Figure 14.6. 

 

 

FDOA line 
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Figure 14.6 

 

  It is obvious to the reader that there are two intersecting points, but advanced 

geolocation techniques are able to discern the probable location between the two and 

produce a confidence ellipse around the probable true location.  The intersection notated 

as the “probable location” would be represented in the power spectrum as the CAF peak 

as we have developed it previously in Section 12, page 67. 

 

 

15.  Final Comments and Recommendations 

 

     This concludes my study of the mathematical definition, development and validation 

of the cross-ambiguity function.  Mathematical concepts such as convolution operator, 

the Euler Identity, complex conjugate, Hilbert Transform, sinc function, advanced 

trigonometric and integration techniques. Most of these concepts have been exhaustive 
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derivations with the goal to not only add to library of knowledge of the cross-ambiguity 

function, but offer a deeper understanding of the mathematical precepts that, if elucidated 

properly, can translate more easily in interpreting advanced signal processing processes. 

 

This thesis addressed the one-pulse model.  This work should be extended to, in both the 

discrete and continuous cases, a series of pulses. While many of the techniques would be 

similar, additional mathematical concepts would be explored to explain them in better 

detail as we have done here in the single pulse case. 
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Appendix 1 

 

Truncated and Rectangular Pulse Convolution MATLAB Code 

 
t = -4:0.01:5;    % time domain 

  
dt = 0.01;   % delta t 

  
x = rectpuls(t);   % MATLAB square pulse 

  
h = truncatede(t+4);   % truncated pulse 

  
y2 = conv(x,h) * dt;   % convolution operation 

  
y2 = y2(1:length(t));   % length of output signal 

  
plot(t,y2,'LineWidth',3),grid 
xlabel('Time') 
ylabel('Amplitude'),... 
title('Output Signal y(t)') 
axis ([-3 4 -0.5 2]) 

 

 

Rectangular Pulses Convolution MATLAB Code 
 
t = -1.5:0.01:2.5;    % time domain 

  
dt = 0.01;    % delta t 

  
x = rectpuls(t);    % MATLAB square pulse 

  
h = rectpuls(t+1);    % MATLAB square pulse shifted 

  
y2 = conv(x,h) * dt;   % convolution operation 

  
y2 = y2(1:length(t));    % length of output signal 

  
plot(t,y2,'LineWidth',3),grid 
xlabel('Time') 
ylabel('Amplitude'),... 
title('Output Signal y(t)') 
axis ([-3 4 -0.5 2]) 
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Appendix 2 

 

Hilbert Transform of Cosine Function 

 

 

∫
   (     𝜏     𝜏 )

     𝜏     𝜏 

 

  

  𝜏   ∫
   (     𝜏     𝜏 )

     𝜏     𝜏 

 

 

  𝜏 

 

 

  ∫ ∫                    (     𝜏     𝜏 ) 𝜏  

 

 

 

 

 

 

 

Since this is an improper integral the Cauchy Proper Value must be used 

 

∫                      (     𝜏     𝜏 )  𝜏

 

 

 

 

where                        and        (     𝜏     𝜏 )  𝜏 

 

First step of integration by parts process is 

 

                         𝜏 

 

             𝜏     𝜏   

 

 

                              𝜏     𝜏   

  ∫            𝜏     𝜏  [     (             )] 𝜏 

 

                      (      𝜏     𝜏 )

  ∫     (             )          𝜏     𝜏   𝜏 

 

 

The second step of integration by parts is 
 

Where         (             )
   and          (      𝜏     𝜏 ) 𝜏 
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          (             )d𝜏 

 

               𝜏     𝜏   

 

∫   (             )    (     𝜏     𝜏 )  𝜏 

    (             )   (     𝜏     𝜏 ) 

 

  [    (             )[    (      𝜏    𝜏 )] 

 

 ∫      (             )[    (     𝜏     𝜏 )] 𝜏] 

 
  

Simplifying we have, 
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     (             )    (      𝜏     𝜏 ) 

 

        ∫                      (     𝜏     𝜏 ) 𝜏

                      (      𝜏     𝜏 )

     (             )    (      𝜏     𝜏 ) 
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∫                     (     𝜏     𝜏 ) 𝜏

 
                     (      𝜏     𝜏 )      (             )    (      𝜏     𝜏 )

       
 

 

 

Evaluating the integral from 0 to infinity, we have 

 
 

    
 

 

 

Placing this result into the double integral, we have the following which can be resolved 

by integration table 

 

∫
 

    
   

 

  

 

By substitution, 

 

        and          

 

 

 
∫

 

 
  

 

  

 

 

 

 
      

 

back substituting 

 

 

 
         

 

Integrating from    to  , we find the result is undefined, and this is expected since 
   (             )

             
 is an odd function. 
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