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ABSTRACT 
 
This study presents a comparison of three Artificial Intelligence (AI) approaches: 

multilayer perceptron (MLP), genetic algorithms (GA) and self-organizing maps (SOM) 

to improve automated asphalt pavement crack classification using computer vision. Our 

system consists of three stages: 1. Image preprocessing, and crack detection 2. Feature 

extraction, and image representation 3. Image classification. The first stage was done by; 

thresholding, median filtering, and tiling and local linear regression. The second stage 

was done by two methods; the first method was Hough transform, which produces feature 

vectors of the form {average  Hough angle, number of crack hits in the image}, and the 

second method was crack hit projection, which produces a feature vector of the form 

{number of hits projected on the X-axis, number of hits projected on the Y-axis}, a new 

approach we introduce, which we believe enhances the classification capability of the 

system. In the final stage, the three AI approaches were trained, and tested using real 

pavement crack images. The MLP model was designed as a (2-node input layer, 3-node 

hidden layer, and 4-node output layer) network. The GA model was used to evolve a two 

dimensional matrix, containing the labels of the different crack classes. In the SOM 

model a matrix similar to the one resulted in the GA approach was produced from the 

best maps we trained. For both models (GA & SOM), the class of the image was found 

by looking-up the label at the coordinates of the classifier matrix represented by the 
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feature vector. We implemented the nearest neighbor algorithm in case of a NULL cell in 

the classifier matrix. We chose this third approach (SOM) as a typical non-supervised 

learning method, to compare it with the first two (MLP & GA) which are considered as 

supervised learning methods. The scope of the study considered the main four types of 

asphalt cracks: Alligator, Block, Longitudinal, and Transverse cracks. An extensive 

testing was conducted following a systematic procedure of training and testing for all 

classifiers developed. The best classifiers gave the  following accuracy: Hough/MLP at 

93.6%, Projection/MLP at 98.6%, Hough/GA at 89.2%, Projection/GA at 98.2%, 

Hough/SOM at 86%, and Projection/SOM at 98.4%.  
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1.  INTRODUCTION TO ASPHALT DISTRESSES 

Large structures are usually constructed with materials that exhibit  distresses after 

construction because of loading, environmental conditions, and aging. The large 

structures include pavement, chimneys of nuclear power plants, skyscrapers, pipelines, 

and others. The distresses are presented in the form of surface cracking in most situations  

[1]. One of these structures, asphalt pavement, is the focus of the thesis. 

1.1. Different Types of Pavement Distresses 

In this section, various types of asphalt pavement distress classes are briefly discussed 

and a subset of interest is defined. These definitions conform to those found in US 

department of transportation distress identification manual [7]. 

Patching and Potholes 

§ Patch/Patch deterioration:  Portion of pavement surface, greater than 0.1 m2, that 

has been removed and replaced or additional material applied to the pavement 

after original construction. 

§ Pothole: Bowl-shaped holes of various sizes in the pavement surface.  

Surface Deformations 

§ Rutting: A rut is a longitudinal surface depression in the wheel path. It may have 

associated transverse displacement. 

§ Shoving: Shoving is a longitudinal displacement of a localized area of the 

pavement surface.  

Surface Defects 

§ Bleeding: Excess bituminous binder occurring on the pavement surface, usually 

found in the wheel paths. 
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§ Polished Aggregate: Surface binder worn away to expose coarse aggregate. 

§ Raveling: Wearing away of the pavement surface caused by the dislodging of 

aggregate particles and loss of asphalt binder. 

Miscellaneous Distresses 

§ Lane-to-Shoulder Drop-off: Difference in elevation between the traveled surface 

and the outside shoulder. 

§ Water Bleeding and Pumping: Seeping or ejection of water from beneath the 

pavement through cracks. 

Cracking 

§ Alligator cracking as shown in Figure 1.1: Occurs in areas subjected to repeated 

traffic loadings (wheel paths). It can be a series of interconnected cracks in early 

stages of development. Develops into many-sided, sharp-angled pieces, usually 

less than 0.3 m2 on the longest side, characteristically with a chicken 

wire/alligator pattern, in later stages.  

 

Figure 1.1 Alligator cracking 

 

T 
R 
A 
F 
I 
C 



  

    3 

§ Block Cracking, shown in Figure 1.2: A pattern of cracks that divides the 

pavement into approximately rectangular pieces. Rectangular blocks range in size 

from approximately 0.1 m2 to 10 m2.  

 

Figure 1.2 Block cracking 

§ Longitudinal Cracking, shown in Figure 1.3: Cracks predominantly parallel to 

pavement centerline. 

 

Figure 1.3 Longitudinal cracking 

 

T 
R 
A 
F 
I 
C 

T 
R 
A 
F 
I 
C 



  

    4 

§ Transverse Cracking, shown in Figure 1.4: Cracks those are predominantly 

perpendicular to pavement centerline. 

 

Figure 1.4 Transverse cracking 

 

1.2. Distress Data Collection  

A typical pavement management system consists of data collection, data verification and 

data analysis. A pavement condition survey and analysis provides much of the 

information necessary for pavement management, and is vital in order to maintain a 

quantified condition of network, more accurate and accessible information, track 

performance of treatments, forecast pavement performance, anticipate maintenance and 

rehabilitation needs, establish maintenance and rehabilitation priorities, and allocate 

funding. Therefore, it is critical to collect accurate pavement condition data in an efficient 

and safe manner and to design a reliable analysis system [1, 2, 3]. 
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1.2.1. Manual methods  

There are two basic methods for conducting manual pavement condition surveys, walking 

and windshield surveys. Walking and windshield surveys are also commonly combined 

to provide a more complete pavement network survey. 

 

Walking surveys are completed by an expert who is trained to rate pavement distresses 

according to the agency’s distress identification specifications. The expert walks down 

the side of the pavement and fills out a pavement condition form that describes the 

amount, extent, and severity of each distress present or a randomly selected sample of the 

roadway.  

 

A windshield survey is completed by driving along the road or on the shoulder of the 

road. The pavement is visually rated through the windshield of the vehic le. This method 

allows for greater coverage in less time; however, the quality of the pavement distress 

data is compromised.  

 

1.2.2. Automatic methods  

Automated surveys use technologically complex vehicles traveling at highway speeds to 

collect and store data (Figure 1.5). There are several types of automated pavement survey 

vehicles available differing in data collection technology; however, these all share the 

same goal of collecting accurate pavement condition data. Examples of theses 

technologies include: 
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Figure 1.5 Pavement survey vehicles [3] 

§ Analog and digital cameras are generally used for pavement surface distresses.  

§ Ultrasound or Laser technology to capture the rutting (the transverse profile of the 

road).  

§ High frequency laser to collect the texture of the pavement. 

 

1.2.3. Manual vs. Automatic data collection 

The manual collection system is self-validating in the sense that all data are collected by 

an expert. In automatic collection, data needs to be verified by randomly sampling a 

percentage of the data and validating it against the actual corresponding pavement. 

Requirements specifying this percentage vary from state to state. 

In any engineering problem it is critical to go through the alternatives evaluation phase 

which leads to decision making. Table1.1. contains a comparison between the two 

methods of pavement data collection, manual and automatic [1, 8]. 
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Table 1.1 Manual vs. automatic pavement surveys 

Manual Automatic 

Expensive and time consuming. Less expensive and fast. 

Labor intensive Very minimal labor is needed 

Hazardous Safe 

Data sampling. 100% survey. 

Subjective. Objective  

Difficult to manage Integratable with management system 

Repeatability is low Proven to be much better [4] 

 

After collecting the pavement data using the techniques described above, the data is 

analyzed manually or automatically based upon standard formulas and indices which also 

vary from state to state. Examples of these parameters include: 

§ Mean slope variance, the variance of slopes measured over a 6- inch wheel. 

§ Mean rut depth. 

§ Pavement cracking in ft/1000 ft2 of pavement surface. 

§ Patching in ft2/1000 ft2 of pavement surface. 

§ Roughness or present serviceability index. 

§ Severe localized raveling (Code: 0 = none, 1 = present).  

A pavement distress index is then formulated from combinations of these parameters, and 

used to indicate pavement quality. 
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2.  MOTIVATION OF THE STUDY 

Observing methods employed by experts in the pavement assessment industry [3] we 

noted the following limitations in current practice: 

§ They involve computing exact features of crack patterns, which can be 

computationally expensive. 

§ A hard coded criterion is not likely to perform well in the harsh crack-pavement 

environment which includes a significant amount of noise and stochastic 

distribution and geometry of cracks. 

§ The processing speed is important, since the project of pavement assessment 

involves surveying 100% of target pavement. Processing time per image plays an 

important factor in motivating us to design more efficient techniques, especially if 

the analysis application required real-time processing. 

With this context, we believed that this may be a good test bench to assess the real world 

potential of several AI approaches, specifically speaking, multilayer perceptron, genetic 

algorithms and self-organizing maps. We chose the three approaches because they 

represent two main learning categories: supervised (MLP and GA), and the unsupervised 

learning (SOM). Further more we believed that with these variety of methods and using 

different computer vision techniques, we can have a rich experimental input, which in 

turn should produce a rich output that should give us the ability to compare and contrast 

among the different methods. 

It appeared that from the data comparison between results of a study of one of the 

commercial software, and results from manual survey, that the automated system has no 

difficulty of finding cracks. The problem lies in the classification and quantification of 
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the cracks. This problem is not vendor specific and has been a research topic for years 

[4]. The current systems do not have much of problem detecting the existence of cracks, 

but distinguishing between crack types is a challenge [11]. These two studies 

significantly enhanced the motivation to investigate other techniques that we hoped will 

perform better in the classification problem. 

 

3. PREVIOUS WORK 

Chou et al. [12]. Cheng introduced a novel approach of moment invariants and neural 

networks. There approach is summarized as following: 

Rotation and image enhancement: 

In order to generate enough image samples needed to train the neural network module 

and to test moment invariant as well, they used image rotation. The images then are 

enhanced by using the Z-function algorithm described in their paper. For further image 

enhancement smoothing technique was applied by using an averaging filter (mean filter). 

The resulting images then were thresholded using a fuzzy technique, which depends on 

maximizing of fuzzy entropy; the method is described in their paper, which we might 

consider if we decide later to automate our thresholding phase. 

Seven types of cracks were considered namely: longitudinal, transverse, combined, right 

and left diagonal (edge cracks), alligator and no crack. Three different moment-based 

features were used: Hu moments, Bamieh moments, and Zemike moments. Each one has 

several moments that are computed by processing the resulting binary images. 
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Eighteen nodes were designed to accept the vector formed by the different moments 

computed previously and seven nodes for the output were used in a neural network 

classifier system with back propagation. The results were 100% accurate. 

  

Mohajeri and Manning [3] presented a new system, which was an attempt to fully 

automate a pavement (asphalt & concrete) management. It uses an analog video camera 

setup in the front of a vehicle to video tape the road surface. The video signal then is sent 

to an image processing unit to convert the video signal into digital frames by using a 

frame grabber unit. Then the images are filtered using a multiplication filter to reduce the 

noise and to enhance the crack objects in the digital image. 

The images are then converted into gray-scale images and then to binary images using 

dynamic thresholding which improves the segmentation. Since each image will have a 

different histogram distribution, it is very important to choose the threshold that will 

produce the best segmentation of cracks from the background. 

The classification was done by relying on the characteristics of each individual crack 

pattern and using the elimination technique. The system did not only classify cracks but 

also was able to quantify and qualify different types of cracks: longitudinal, transverse, 

block, and alligator, by computing the length, width, and area of the cracks, which are 

used to determine the severity of the cracks. 

 

Lee and Cheng [5] presented an investigation about the performance of ANN using 

different techniques for image representation. Three different techniques were 

investigated and compared based on the classification capability. In all of the three 
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techniques the tiling method was used to reduce the image data into a matrix of 0s and 1s, 

each cell represents a tile in the original image and a statistical approach is used to 

determine if that particular tile contains a crack object or not, and based on that the cell is 

set to 1 or 0. For training purposes they generated synthesized images using a simulator 

they introduced. They test the system with real pavement images. 

This image-based technique operates on the entire tiles of the original image for example 

if the size of the image is: 512x512 and the size of the tile was 32x32, then the reduced 

image will have a vector of (512/32)(512/32) entries = 256 entry, and so the matrix 

representing the image will have a dimension of (16x16) filled of 1s and 0s. The resulting 

matrix then is fed into the MLP module to be trained. And so the ANN has to see every 

single tile in the image in order to learn the pattern. 

In the histogram-based technique, two histograms were produced, horizontal and vertical. 

They simply accumulate the number of 1s in the resulting matrix in both directions to 

produce the vertical and the horizontal histograms.  The training here is done by 

providing only the two vectors into the ANN, which will be able to recognize the 

different types of cracks by the distribution of number of crack objects accumulated in 

the entries of the vertical and horizontal histogram vectors. Taking the same example 

above we only need 16 vertical and 16 horizontal = 32 entries to plug into the ANN.   

The proximity was extremely simplified technique which computes one proximity value 

for both the horizontal and the vertical histograms described above. The proximity value 

is computed as the total of the differences of the adjacent cells in the histogram. These 

two values in addition to the number of crack tiles in the image are presented in to the 

ANN module as a 3-node input layer only. 
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The results were surprising because the most accurate technique was the proximity-based 

one which was not expected since it uses only three values to represent any image. The 

classification results were: for image-based was 70.2%, for histogram-based was 75% 

and for proximity-based was 95.2%. 

They used an interesting approach for image representation, which we partially adapted 

for our own. Their system was able to classify the four types of cracks mentioned in the 

scope with a remarkable accuracy about an average of 95%.  But they failed to classify 

both alligator and block cracks at the same accuracy; for those types it was 88%. After 

studying their technique of image representation we think we can enhance the accuracy 

of the system by presenting a different technique, described in the methodology, that will 

ensure a better image representation and better contrast in the resulting vectors. This in 

turn will make the job easier and more accurate for the classifier systems to learn how to 

classify all of the cracks at a higher accuracy.  

 

Wang et al. [6] presented a new automated system capable of collecting and analyzing 

Pavement cracks in real-time and with high-resolution digital images. Real-time 

processing is defined as processing data at the same data throughput as the vehicle is 

collecting images at highway-speed normally between 80 to 100 KPH. 

The approach in this paper: the first step in the image processing process is to distinguish 

any cracks from other non distress noises. The primary method in this step relies on 

analytical descriptions of distresses’ characteristics. The second step is to connect and 

vectorize the detected cracks, and establish a distress database related to location, 

orientation, and size of each crack. Based on the geometric information obtained in the 
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second step, cracks can be classified using any pre-defined distress categorization 

protocols. The result of the analysis is contained in a database regarding the location and 

geometry of individual cracks. Several distress categorization protocols are incorporated 

into the system to generate surface crack indices. 

An interesting point was addressed in this paper which is the importance aspect of 

detecting distress is that highway pavement surface may contain numerous foreign 

objects, such as oil residue, dirt, lane markings, vehicle’s tire mark, tree limbs, and other 

non-distress rela ted items. It is important to develop algorithms to correctly distinguish 

the distresses or cracks from these non-distress items. In addition, certain images 

collected in the field may also possess a quality level that may not be sufficient enough, 

therefore resulting in additional difficulty in processing. In this study we are not going to 

consider this problem but address it in the recommendation and future work. 

Another important point was addressed in this paper is the repeatability of the system 

which is very important for any classification to be considered robust and reliable. This 

test was conducted on the introduced system and the results in the entire test showed 

similar patterns with a standard deviation of 15% of the average CI (crack indicator). 

 

Wang and Elliot [4] investigated the commercial system WiseCrax (hardware and 

software) the following aspects were noticed: 

Pavement surface images are collected with two continuous video cameras, covering the 

survey lane of about 4 meters. The cameras are black and white Charge-Coupled Device 

(CCD) cameras. Both cameras are supported by two stretched-out beams in the back of 

the vehicle and face perpendicularly to the pavement surface. Video images are recorded 
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into S-VHS format. Images from each camera are stored sequentially in one tape. This 

storage technique is also called multiplexing. The images are demultiplexed when being 

processed. 

A speed-encoding algorithm is applied so that simultaneous images from the two cameras 

and sequential images from one camera form a uniform pavement surface covering the 

entire lane. RoadWare indicates that the speed-encoding algorithm allows the cameras to 

capture images at 80 km/h. Camera shutters are synchronized with strobe lights to 

provide artificial lighting to ensure that (1) the cameras can get enough visual 

information in a very short period of time when the vehicle is traveling, (2) collected 

images are without shadows. 

In WiseCrax, the crack identification process begins with the digitizing of the pavement 

video collected with the two cameras. The video is in analog format which must be 

converted into digital images for computer processing. 8-bit gray scale images are 

obtained from the digitization process. The identification process tried to identify each 

crack. The location of the beginning and end of each crack is referenced using an x-y 

coordinate system. The crack length, width, and orientation are also computed and saved. 

The process of digitizing to gathering statistics on individual cracks is similar to the 

process of “vectorizing” a raster image used in Geographical Information Systems. Once 

the crack “vectors” have been identified, the system plots them, creating a crack map of 

the pavement surface. A statistic report is also created during the crack identification 

phase. Each crack is represented in a single entry in the table, showing the location, start 

and end points, length, width, and orientation of individual cracks. 
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Since the definitions of distress categories vary from agency to agency, WiseCrax 

compares the location, length, and width of cracks against criteria for various crack 

distress categories. For instance, if cracks in a block pattern are more than 300 mm apart, 

they may be classified as a block cracking. If they are closer together, they may be 

classified as fatigue cracking. WiseCrax has the flexibility to process data as new 

classification definitions are developed.  

WiseCrax operates in two modes: automated and interactive. In automated mode, all 

processing is done without human intervention, once the initialization parameters on 

pavement type, camera and light settings, etc. are set. Interactive mode allows the user to 

review, validate, and edit the WiseCrax results. For instance, the automated mode can be 

run first, the display shows the pavement image with overlaid color lines indicating the 

presence of cracks. The user can then point-and-click to add, delete, or modify the results. 

For quality control purposes, the interactive mode is normally used to perform statistical 

validation of automated results using random samples of data. 

  

Lee [11] presented a survey of the various techniques and algorithms being used in this 

field. Some of the interesting topics presented in this paper include: 

§ Limitation of computer vision 

1. Noisy pavement surfaces. 

2. Lane markings, skid markings, etc. 

3. Lighting conditions changes with different times of day, cloud covers, 

shadow, etc. 

4. Reflectivity of paving materials complicates cracks detection. 
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5. Interreflected light illuminates the crack more than the pavement. This causes 

a big problem in crack objects segmentation. 

6. Complete pavement survey requires huge amount of storage. As a solution for 

that the real-time parallel processing was introduced in some systems. 

§ Crack image processing algorithms 

The two classes of algorithms used in most pavement distress analysis are: 

1. Local operators: which are focused on determining if the local sub-area 

belongs to crack object or not. 

2. Global operators: takes the result of local operators and determines the 

amount and orientation of the detected crack objects. 

The author concluded that, the systems did not have much of a problem detecting the 

existence of cracks, but distinguishing between crack types was a challenge.  

 

Hsu et al.  [27] described a moment invariant technique for feature extraction and a neural 

network for crack classification. Distresses that were considered in there study are: 

Longitudinal, transverse, netted (alligator & block), and cavities (potholes). 

The moment invariant technique reduces a two dimensional image pattern into feature 

vectors that characterize the image such as: translation, scale, rotation of an object in an 

image. After these features are extracted they are provided as input to the neural network 

module in order to classify the different types of pavement cracks. They used the back 

propagation technique to provide better fitness against noise. 

The images were first captured as colored pictures, then they were converted into gray-

scale images, and because in concrete pavements the cracks are always darker than the 
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background pavement, the segmentation was fairly easy job which was done using 

thresholding to produce binary images. After that a filter operation was performed on 

them to gain some image enhancement by filtering some of the noise. 

The overall results of this study were satisfactory and the classification accuracy of the 

introduced system was 85%. 

 

4. METHODOLOGY 

In section 3, we provided an overview of Pavement Management. Now we wish to define 

the scope of the thesis and its place in the pavement assessment process. 

In this thesis we addressed a subset of Asphalt Crack Classification. Specifically, the four 

types of cracks as they are defined in the standard mentioned above: longitudinal, 

transverse, alligator and block cracks. In this section, we will present all methods we 

implemented in the different system phases to approach the problem addressed by our 

study. The system we developed consists of the following phases: image collection, 

preprocessing, crack detection, feature extraction & image representation,  classification, 

and results comparison. 

 

4.1. Image collection 

This process was done by using a digital camera, by going to arbitrary streets and parking 

lots and collecting colored pictures of different crack types. Some precautions were taken 

to maintain consistent, reliable, and systematic image collection:  
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§ Illumination: the illumination is important to the quality of the captured images 

which affect the contrast between the crack objects and the pavement background, 

so we always made sure that we take images during a bright day and at similar 

timing for consistency. 

§ Distance from the camera to the pavement: we maintained the same pavement-to- 

camera distance as much as possible for the entire collection process, since it 

affects the size of the crack and the relative gabs between crack objects in the 

acquired image, which is important for the classification process. 

§ Expert validation: the data collection technique was consulted and approved by a 

domain expert [3]. 

 

4.2. Image Preprocessing & Crack Detection 

For the purpose of investigating various image analysis techniques, we designed a 

customized application framework to conduct a preliminary investigation. This phase 

included thresholding, noise filtering, image tiling and local linear regression. 

 

4.2.1 Thresholding 

There are several methods we studied in an attempt to find a technique that can do 

automatic thresholding. These methods include: P-Tile, Mode method, and Iterative 

thresholding [13]. All these methods require a bimodal histogram of the input image as 

shown in Figure 4.1. The preliminary investigation of the collected images showed that 

most histograms were not bimodal, as shown in Figure 4.2. This renders automatic 

thresholding, described above, ineffective for the study. 
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The results obtained by an edge detection technique in the segmentation of crack objects 

from the pavement background were unsatisfactory because this method rendered the 

noise bulkier which made it to be classified as small edges that would be difficult to 

distinguish from the cracks, and to be eliminated.  A sample image is illustrated in Figure 

4.3 therefore; we elected to proceed with manual thresholding, delaying the investigation 

of automatic thresholding for a future study. To demonstrate the difference between the 

two techniques (Edge detection & Thresholding), the result of thresholding a sample 

image is illustrated in Figure 4.4. 

 

     Figure  4.1 Object/background histogram [28]    Figure 4.2 Histogram of a sample image 
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Figure 4.3 Edge-detection 

 

Figure 4.4 Thresholding. 

 

4.2.2. Noise Filtering 

The goal of this phase was to perform filtering on the binary images produced in the 

previous process to eliminate noise as much as possible. We compared several image 

enhancement techniques, smoothing, low-pass filtering, sharpening, etc. and the best 

result in the preliminary experiments was using the Median filter [9] after thresholding.  

Figure 4.5 illustrates a sample of image thresholding, and Figure 4.6 shows the result of 
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applying the Median filtering to the same image after thresholding1. We applied this filter 

to a large number of images representing all four types of cracks, and we found it 

satisfactory. A sample of each crack is processed by the median filter and shown in 

Figure 7. The Median filter is described in appendix B-1. 

 

Figure 4.5  Noise after thresholding 

 

Figure 4.6 Median filtering after thresholding in Figure 4.5 

 
                                                 
1 All images other than images of unprocessed pavement have inverted grayscale for printing. 
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Figure 4.7-a Median Filtering (Alligator) 

 
Figure 4.7-b Median Filtering (Block) 

 
Figure 4.7-c Median Filtering (Longitudinal) 
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Figure 4.7-d Median Filtering (Transverse) 

 

4.3. Feature Extraction and Image Representation 

For image representation, two approaches were considered: image tiling combined with 

local linear regression and crack hits projection (The projection method), and the Hough 

transform. The algorithm of the Hough transform is illustrated in appendix B-2. 

 

4.3.1 The Projection Method 

This technique quantizes the thresho lded image space into blocks, and then performs  

local linear regression per block to approximate the crack line segments and eliminate 

noise. The algorithm is summarized as following: 

1. The binary image is divided into tiles. Each tile contains 400 pixels in a 20-

pixel by 20-pixel square. 

2. For each tile perform linear regression on the entire points (pixels) in the 

space of this particular tile. 
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3. If the correlation factor r in Equation (5) resulting from the regression 

operation is greater than a predefined threshold and number of points in the 

tile exceeds a predefined threshold (10), then we mark the line in the resulting 

image using the regression equation described in Equation(2), and we discard 

every thing else in that tile space. A minimum number of points per tile were 

considered here to eliminate the cases where few noise points could be the 

only existing points in a tile satisfying the correlation factor threshold. 

4. This procedure resulted in pure lines without any single point of noise. Any 

block that satisfy the criteria above, is considered as a hit of crack object. 
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We did some preliminary experiments with this technique and a sample result is 

illustrated in Figure 4.8. As a result of this technique, we converted the crack objects into 

a well defined space of line segments, which were used for feature extraction in the next 

step. 
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For this technique we had three parameters that needed to be optimized through 

experimenting with different types of crack images, since they are important for the 

effectiveness of the technique.  The three parameters were found empirically to be: 

§ r : the correlation factor; was found best at 0.3 for our images 

§ Minimum number of points (pixels) per tile; was found best at 10 pixels. 

§ The size of the tile; was found best at 20x20pixels  

The lines are marked on the output images only to visualize the output of this technique. 

The actual output for each tile was a single point (one pixel/hit) representing a crack 

object hit in that tile. A sample of this result is illustrated in Figure 4.9, using the same 

image in the previous step shown in Figure 4.8. 

 
Figure 4.8 Tiling & local regression 

 

 
Figure 4.9 Crack hits after local linear regression 
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4. The final step was image representation, by projecting the crack hits on the X and Y 

axis. In this operation we considered only the endpoints of the crack objects represented 

by hit points in the resulting image.  The result of the projection was two binary vectors 

X and Y as shown in Figure 4.10. Combining the two vectors in a single vector to 

represent the crack pattern produced the final feature vector, which defines the 

characteristics of the crack patterns as following: 

§ Alligator cracks: have projection points on both X and Y axis with higher 

frequency than block cracks. 

§ Block cracks: have projection points on both X and Y axis. 

§ Longitudinal cracks: have projection points mainly on the X-axis 

§ Transverse cracks: have projection points mainly on the Y-axis. 

 

 
 

Figure 4.10 Possible projection vectors of the four crack patterns 
 

The theoretical vectors in Figure 4.10 when converted into two dimensional input 

vectors, they become as follows: 

Alligator    [09:09] 

            Block    [05:05] 

 Longitudinal  [05:02] 

 Transverse  [02:05] 
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An illustration of actual projection is given in Figure 4.11. These sub-vectors [X:Y] were 

reduced into two components as follows: 

§ Total number of 1-components in the sub-vector X           (X-component). 

§ Total number of 1-components in the sub-vector Y           (Y-component). 

The  outputs for the four different crack classes, shown in Figure 4.11 are: 

Alligator    [47:30] 

            Block    [16:17] 

 Longitudinal  [04:00] 

 Transverse  [00:04] 

 

  
 

Figure 4.11-a The projection method (Alligator crack) 
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Figure 4.11-c The projection method (Block cracks) 
 

  
 

Figure 4.11-c The projection method (Longitudinal cracks) 

  
Figure 4.11-d The projection method (Transverse cracks) 
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4.3.1. Hough Transform  

We applied the Hough transform on a subset of the images after thresholding. Our 

objective in applying Hough transform is to reduce the images to a representative form, 

from which we can construct the feature vectors that we believe should characterize the 

crack patterns. Figure 4.12 shows a typical result of the Hough transform applied to a 

sample image after thresholding and median filtering, with the following parameters: 

,1=∆ϑ ,2=∆ρ  20=holdHoughthres . 

The parameters for the Hough transform were recommended in [9]. We found the Hough 

transform inadequate for our purpose, specifically; our data had the following 

characteristics: 

§ The crack patterns in general do not have well defined lines that can be 

detected by the Hough transform. 

§ The remaining noise after the median filtering adversely affected the output 

image. 

 

Figure 4.12 Hough transform after thresholding & median filtering 
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After this trial we considered the effect of applying the Hough transform after tiling and 

generating the hit-patterns, because we believed that it could solve the previous two 

problems described above. Since in tiling and using linear regression we are 

approximating the entire pattern by using the two conditions, minimum correlation factor 

and minimum number of points per tile, we expected to have better results if we applied 

the Hough transform after this operation. Results are shown in Figure 4.13 for each crack 

type.  

The feature vectors using Hough transform were constructed as follows: 

The parameters for Hough transform were determined by experimenting with all types of 

cracks using the recommended ones in [9]. For Hough-threshold we used the following 

empirical formula: 

Hough-threshold = 100/((100/ number of hits in the crack pattern )+1)      (19) 

The threshold was chosen to be dynamically changing based on the number of hits in the 

pattern because the different patterns produce different numbers of hits. A base hit of 100 

was chosen after the preliminary trials with all types of cracks. We needed a base 

threshold because sometimes the (longitudinal and transverse) cracks do not produce 

enough hits that can be used as a threshold, therefore this base will prevent the week 

Hough-lines from appearing in the resulting Hough- image. 

The features were represented by 2D vectors: { Ν,ϑ } where: 

ϑ  = The average angle of the entire quantized Hough space. 

N =  Total number of pattern-hits produced after tiling and linear regression. 

The results of this approach were: 

§ For a-type cracks: { ∆±o45 , N = larger number than b-type crack} 
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§ For b-type cracks: { ∆±o45 , N = smaller number than a-type crack} 

§ For t-type cracks:{ ∆+o0 , N = much smaller number than a-type crack} 

§ For l-type cracks:{ ∆−o90 , N = much smaller number than a-type crack} 

∆  was observed in (a & b) types  to range from o10−  to o10+ . In t-type from o0  to 

o20+ . In l-type from o0  to o30− . All observed values of delta conform to the standards 

we refereed to in [7] and [5] . 

The following vectors are the actual feature vectors extracted from the images illustrated 

in Figure 4.13 respectively. 

Figure 4.13-a à {43, 316} 

Figure 4.13-b à {42, 140} 

Figure 4.13-c à {0  ,   44} 

Figure 4.13-d à {86,   43} 

 

 
Figure 4.13-a Hough transform after hit-patterns (Alligator crack) 
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Figure 4.13-b Hough transform after hit-patterns (Block crack) 

 

 
Figure 4.13-c Hough transform after hit-patterns (Longitudinal crack) 

 

 
Figure 4.13-d Hough transform after hit-patterns (Transverse crack) 
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4.3.3. A Special Case 

Although (longitudinal or transverse) cracks are found in most cases at angles 0-30 

degrees from the center line of the pavement (vertical for longitudinal, horizontal for 

transverse) [5], but in rare cases they can be found at a common angle of o45 . From 

observations while collecting crack images along with expert consulting, it was found to 

be a rare case.  

The engineering stress analysis for this case can be found in any typical reference that 

deals with engineering materials and stress analysis [21]. We can very briefly describe it 

as follows: 

Engineering materials are classified based on their behavior when subjected to a loading 

(stress, cloud be mechanical or thermal) system into several types. These types include: 

ductile materials like metals in general, and brittle materials like glass, concrete, asphalt. 

The types of loading systems can be described as: 

§ Tension: the material is subjected to a stretching stress system. 

§ Compression: the material is subjected to a compressing stress system. 

§ Torsion: the material is subjected to a twisting stress system.   

In the first two cases (tension & compression) the brittle materials fail with cracks that 

forms o90 0∆±  angles with the principal axis (the center line of the object in the direction 

of loading, whereas in the third one (torsion) the brittle materials fail with cracks that 

forms o45 0∆±  angles. In order for this system of loading (thermal or mechanical) to 

occur rare conditions need to exist. So we decided to try to consider this rare case hoping 

to improve the overall performance of our proposed system as follows: 
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The number of detected crack objects (N) can be considered in the feature vector to 

handle the case of a crack pattern of the type (longitudinal or transverse) at o45 . Because 

this type of crack pattern will be projected evenly on the X-axis and the Y-axis, so the 

classifier system will be confused and it might be classified as a block or alligator crack. 

By adding the (N) feature, we believe the problem can be solved, since a crack 

(longitudinal or transverse) at o45 should have much less crack objects (hits) than block or 

alligator type cracks. 

 

4.3.4. Imaging Constraints 

§ In the vast majority of the images, the crack objects were darker than the 

pavement background, so crack segmentation using thresholding gave satisfactory 

results that satisfied the needed output from the original images. 

§ The original images are inherently noisy, so thresholding alone was not enough to 

produce reliable binary images for the next phase (image vectorizing). So the 

median filter was used to filter out the scattered noise. The median filter enhanced 

the continuity of the crack objects and filtered out the random noise in the 

background. One drawback was noticed in the filtration operation: the weak crack 

objects which have  low continuity were affected by the median filter, where some 

small segments of the crack objects were filtered out. But the overall performance 

of this operation was satisfying since the loss in segments of cracks objects is 

insignificant and it is unrealistic to expect any filtering method to produce perfect 

results. This is illustrated by Figure 4.14. 
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§ Some noise was strong enough to remain untouched by the median filter. Local 

linear regression, was effective to eliminate the majority of the remaining noise 

from the image, where the correlation factor and the minimum number of pixels 

were both combined to form a threshold criteria  for a tile pattern to be accepted as 

a crack object. 

§ Our method doesn’t take into consideration the spatial variations of the crack 

patterns. We are relying only on reducing the dimensionality of the projected 

vectors into two dimensional vectors, which we think was sufficient to 

characterize crack patterns. We believe spatial variations are less important since 

we are not distinguishing (at this stage) between a crack occurring at the edge of 

the pavement or in the middle or any where else. So the extracted features here 

are two: number of projected hits on the X-axis, and Number of projected hits on 

the Y-axis. Therefore, since we are using a fixed frame size, then the two 

dimensional projected vector [X:Y] should have the needed information to be 

recognized by the classifier system. 

 

Figure 3.14 Lost weak crack objects 
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§ The special case of cracks at o45  presented in image representation section could 

be  solved by the Hough-transform based feature vectors since the angle is 

explicitly presented in the vectors, so we believe that the classifier system can 

easily learn to recognize this kind of pattern. But for this study we did not 

consider addressing this specific case, since it is not an issue in pavement crack 

classification. The crack patterns close to o45  are either classified as transverse or 

longitudinal. 

§ Although there were several other ways to consider for image representation, such 

as leaving the hit patterns the same way they are projected without compressing 

them into two numbers representing the count on each vector, and using them 

directly to train and test our system. Dealing with the pavement as a texture and 

extracting some features to represent the crack patterns. We elected to keep our 

system computational less expensive, since the classification can require real time 

processing. 

 From the above discussion we believe that the chosen methods in segmentation, feature 

extraction, and image representation performed in an integrated way created a more 

robust system.  

 

4.4. Crack Classification 

For this stage we used the three approaches MLP, GA, and SOM. We designed a 

systematic training and testing procedure as following:  

1. An electronic copy of collected images were industry expert [3], to provide 

ground truth for benchmarking the automatic classification. Each image file 
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was assigned a systematic name to reflect the class and the serial number of the 

image: a### for alligator-type images, b### for block-type images, l### for 

longitudinal-type images, and t### for transverse-type images. 

2. Images then were preprocessed by the preprocessing module. This stage 

produced two master files of vectors: one for projection technique, and the 

other one for the Hough transform. 

3. We implemented the cross validation training method [22] as follows. For each 

master file, five different files for training (400 vectors each) and five different 

files (100 vectors each) for testing were generated. The first set of 

training/testing files were constructed by taking the 1st 100 vectors in the master 

file as the 1st  test file, and the rest of the master file was taken as the 1st  

training file. The 2nd 100 vectors were then taken as the 2nd testing vectors, and 

the rest of the master file was taken as the 2nd training file, and so on.  

 

4.4.1. Multilayer Perceptron (MLP) 

The model we chose to implement is the MLP (Multilayer Perceptron), because it is said 

to be the most widely used in pattern classification problems which is a functional 

capability of MLPs [14]. MLP is illustrated in appendix B-3. 

To Apply MLP to our problem we used the Stuttgart Neural Network Simulator (SNNS-

4.2) [23]. As described in the feature extraction section, the input space for all classifier 

systems is a set of 2D vectors. For MLP classifier system for the input  patterns we 

needed 2-node input layer, a 4-node output layer representing the four different cracks, 

and for the hidden layer we systematically experimented both input spaces (Hough & 
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Projection) to find the optimal number of hidden nodes. We present four charts (Figures 

4.15), two for each input space. The complete set of charts for both experiments is given 

in Appendix C-1. As a result of these experiments, we found that three hidden nodes 

formed an effective classifier. Figures 4.15a, b plot the Mean Square Err (MSE, Y-axis). 

Vs. number of training cycles (X-axis). 

   
Figure 4.15-a Hough data experiments to find optimal number of hidden nodes 

 

   
Figure 4.15-b Projection data experiments to find optimal number of hidden nodes 

 

After finding an effective network as described above, we followed the following 

procedure: 
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1. Each of the 10 training files (5 for Hough and 5 for Projection) was used to 

train the MLP (2 input nodes:3 hidden nodes:4 output nodes) using parameters 

recommended by [23], the parameters were: 

§ Training algorithm: standard back propagation. 

§ Learning rate: 0.2 

§ Layers connections: fully connected. 

§ Weights initialization: randomly initialized. 

§ Patterns input mode: shuffle. 

§ Pattern vectors were normalized. 

The trained networks were saved to be used later for testing. 

 

2. Each of the 10 test files was tested against the corresponding trained network. 

The output result files were stored for further analysis and presentation. 

 

4.4.2 Genetic Algorithms (GA) 

Given some problem, a genetic algorithm (GA) seeks to find solutions to it, as follows. 

Start with an initial generation of candidate solutions to the problem, and then subject this 

generation to evolutionary forces such as survival of the fittest, mating followed by 

crossover, and mutation. The hope is that, over time, better and better candidate solutions 

will surface in the generation. Use the best solution as the working solution The standard 

GA algorithm is described in appendix B-4. 

To Apply the GA to our classification problem we used the software GAD [25]. We 

applied the first approach of GA as described in the algorithm appendix B-4, which is 
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applying the GA as direct classifier. In GA problems, solution representation and 

encoding is important  and can significantly affect the output. So after studying our image 

representation method, and the resulted vectors, we had an intuition of a good candidate 

method for solution representation explained as following: 

 

The implementation Projection Method in GA 

In the Projection Method, the target input images were characterized using a two 

dimensional vector [X:Y] as described in section 4.3.2. The input vectors were defined as 

a two dimensional space, which was represented by using a 2D matrix, which was 

expected to have the following properties: 

§ Has the same dimensions of tiled images (height=600/20, width=800/20); where 

600/800 is the height/width of the image respectively, and 15 is the parameter of 

the square tile. 

§ Has four distinct regions, representing the four different crack types. To define the 

regions, we made the following approximations and assumptions: 

ú Since the alligator cracks, were expected to have high number of 

projected hits on both X and Y axis, we represented their region by a 

quarter of a circle centered at the right bottom corner of the classifier 

matrix. The radius of this circle is variable (rA). 

ú A similar reasoning for longitudinal cracks was made. We represented 

this region by a triangle along the width of the classifier matrix with 

two degrees of freedom: the height (lH), and the width (lW). 
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ú The transverse cracks were represented by a triangle along the height 

of the classifier of the classifier matrix with two degrees of freedom: 

the height (tH), and the width (tW). 

ú The remaining region is assigned to block cracks with three dgrees of 

freedom: an offset from the region of alligator cracks (bA), an offset 

from the region of longitudinal cracks (bL), and an offset from the 

region of transverse cracks (bT). 

§ Each crack-type region was filled with the proper crack-type label: label (1) for 

alligator cracks, label (2) for block cracks, label (3) for longitudinal cracks, and 

label (4) for transverse cracks. 

§ The gap among regions was left for the nearest-neighbor algorithm to resolve any 
possible hits in that null region. A typical classifier matrix is illustrated in Figure 
4.16. 

 
Figure 4.16 Typical GA classifier matrix 

lW 

tH 

lW 

tW 

bL 

bA 

bT 

rA 
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Then after this classifier matrix was evolved, each preprocessed input image was 

classified. The class of the image was determined by using the [X:Y] vector of the image 

as coordinates of the classifier matrix. At first the given coordinates [X:Y] was probed  

for a none-null hit. If there was one, then the label is return. If the probed cell was a null, 

then the nearest-neighbor algorithm (Figure 4.21) was followed. 

Mapping GA operators to our work involved the implementation of the following 

operators: chromosome encoding, crossover, mutation, fitness, and selection. The 

following part of this section describes the mapping of these operators. 

Chromosomes encoding: the chromosome (a string of bits) encoded the set of parameters 

of the classifier matrix which represents a possible solution. The number of bits needed 

per parameter was: rA = 5 bits, bA = bL = bT = 3 bits (assuming similar offsets from all 

directions), lH = tW = 3 bits. Total number of bits needed to encode the parameters of the 

classifier matrix was = 20 bit. An example of a typical chromosome is shown in Figure 

4.17. 

rA bA bL bT lH tW 
1 0 1 0 1 1 1 0 0 0 1 0 1 1 0 0 1 1 0 1 

Figure 4.17 Typical chromosome for Projection method 
 

Choosing rA to be larger than the offsets was based on the assumption that regions in the 

evolved matrices should be larger than the null gaps among these regions. 

The crossover operator: crossover operates on selected genes from parent chromosomes 

and creates new offspring. The simplest way to do that is to choose randomly some 

crossover point and copy everything before this point from the first parent and then copy 

everything after the crossover point from the other parent. This is done to the first child 

and the opposite to the second child. After the GA was done evolving the encoded string, 
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the 2D equivalent matrix was constructed. The recommended crossover rate is 80% - 

95% [18]. An example of crossover is illustrated in Figure 4.18. 

                       

Parent-1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 1 1 0 0 1 1 

                        

  Crossover point               

                        

Parent-2 0 1 0 1 1 0 0 1 0 1 0 1 0 1 0 1 1 0 0 0 

                       

                       

Offspring 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 1 0 0 0 

 
Figure 4.18 Crossover operation 

 

Mutation: the purpose of mutation is to prevent GA from falling into local minima and to 

explore new regions of the search space. Mutation is done by randomly choosing one or 

more genes in the offspring resulting from the crossover operation, and alter their value. 

In our case we are going to change the chosen gene by replacing the label residing on that 

gene by one of the other three labels chosen randomly. Mutation is illustrated in Figure 

4.19. The recommended mutation rate is 1% - 5% [25]. 

 
Offspring before 0 1 0 1 1 0 0 0 1 1 0 1 0 1 b 1 1 0 0 0  

Mutation   ?       ?            ?   
                           
                           
Offspring after 0 1 1 1 1 0 0 0 0 1 0 1 0 1 b 1 1 0 0 1  

Mutation   ?       ?            ?   
                           

Figure 4.19 Mutation operation 
 

Fitness: each individual chromosome inherits from its parents the characteristics that 

suggest a solution for the problem. To evaluate the fitness for chromosomes we need a 

fitness function that is capable of assigning a value proportional to how well is a 
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chromosome in solving the problem. Our fitness was evaluated base on how well is the 

current chromosome can classify the input space. This was quantified by assigning the 

percentage of correctly classified images = (number of correctly classified images/ total 

number of images). 

Selection: in order to produce the next generation, parents have to be selected for cross-

over operation to produce the new offspring. Selection is based on the fitness of the 

chromosomes, the bigger the fitness is, the bigger the chance to be selected. The selection 

model we are going to implement is the roulette wheel selection and works as follows: 

We can imagine a roulette wheel with a section associated with each chromosome in the 

generation. The size of the section in the roulette wheel is proportional to the value of the 

fitness function of the chromosome - the bigger the value is, the larger the section is as 

illustrated in Figure 4.20. 

10% 3%

16%

42%

29%
Chromosome-1

Chromosome-2

Chromosome-3

Chromosome-4

Chromosome-5

 

Figure 4.20 Roulette wheel selection model 

A marble is thrown in the roulette wheel and the chromosome where it stops is selected. 

Clearly, the chromosomes with bigger fitness value will be selected more times.  

This process can be described by the following algorithm.  
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1. Sum: Calculate the sum of all chromosome finesses in generation - sum S. 

(performed only once for each generation) 

2. Select: Generate random number r in the interval (0, S).  

3. Loop: Go through the generation and sum the fitnesses from 0 - sum s. When the 

sum s is greater then r, stop and return the chromosome at the current position.  

Population size: experience suggested that very big populations usually don’t improve the 

performance. In general, the recommended size is proportional to the size of the encoded 

chromosomes. For our application we used a popula tion size of 50 and a number of 

generations of 100 as recommended by [25]. 

GA classification model: as described earlier, the design of the parameters of the matrix 

allowed a null region along the borders of the regions, since the are no clear cuts between 

adjacent regions. The following algorithm was implemented for the GA classification 

model: 

1. Each time a new image vector is presented to the system to be classified; its 

coordinates are used to probe the classifier matrix. If a none-null label was found 

at that location the, the label is returned as the type of the target image. Otherwise 

the nearest-neighbor algorithm is used to find the closest match. 

2. Nearest-neighbor Algorithm 

§ The algorithm starts by scanning all neighbor cells at the radius of one unit 

length (r1 in Figure 4.21). The labels stored in these cells are checked, and 

if a none-null label is found, the votes are accumulated. The votes per 

label are checked for a winner every iteration, if there is a winner by the 
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majority voting, then the winner label is returned as the correct class of the 

target image, otherwise do next step. 

§ The radius of the circle is incremented by one, and the same procedure is 

followed in the first step. The algorithm runs for a maximum number of 

iterations and then returns the last winner. The winning label with the 

highest votes is taken as the correct classification. 

 

3 3 3 3 3 3 3 3 3 3 3 3 3 3 
3 3 3 3 3 3 3 3 3 3 3 3 3 3 
      3 3 3 3 3 3 3 3 
          3 3 3 3 
              

2 2 2 2 2      X    

2 2 2 2 2 2 2 2 2      
2 2 2 2 2 2 2 2    1 1 1 
2 2 2 2 2 2 2    1 1 1 1 
2 2 2 2 2 2    1 1 1 1 1 

 
Figure 4.21 The nearest-neighbor algorithm 

 
 
The implementation of  Hough transform method in GA 

A similar approach to the one followed in the projection method was applied in the 

Hough transform, but since we used different image representation technique, there some 

differences between the two methods, and they were as following: 

§ The two components of the feature vectors were: [the average angle of the lines 

detected in the hit pattern, and the total number of hits in the pattern]. 

§ The classifier matrix was represented as shown in Figure 4.22. 
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2 2 2 2 2 2 2 2       1 1 1 1 1 1 1 1 1 1 1 
2 2 2 2 2 2 2 2       1 1 1 1 1 1 1 1 1 1 1 
2 2 2 2 2 2 2 2       1 1 1 1 1 1 1 1 1 1 1 
2 2 2 2 2 2 2 2       1 1 1 1 1 1 1 1 1 1 1 
2 2 2 2 2 2 2 2       1 1 1 1 1 1 1 1 1 1 1 
                                            
                                            
                                            
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

Figure 4.22 The Hough transform classifier matrix 
 

§ The dimensions of the matrix were: the height (90 = max possible angle) X 

the width (2120 = the max possible number of hits). 

§ The parameters of the classifier matrix were: tH = 4 bits, lH = 4 bits, aW = 8 

bits, and offset = 3 bits. 

We used the same classification model we used in the projection method. We followed 

the systematic procedure followed in the MLP approach to evolve the classifier systems 

for both the Hough and the projection methods as following: 

1. Each of the 10 training files (5 for Hough and 5 for Projection) was used to 

evolve the classifier matrix. The Software (GAD [25]) parameters (consulted 

the author of  GAD [25]) used for training were: 

§ Probability of crossover: 1 

§ Probability of mutation: 0.005 

§ Crossover sites: 1-point 

§ Swap probability: 1 

tH 

aH 

lH 

offset 

aW 
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§ Reproduction form: monotonic 

§ Population size: 50 

§ Number of generations: 100 

The evolved matrices were saved to be used for later testing. 

2. Each of the 10 test files (5 for Hough and 5 for Projection) was tested on the 

corresponding evolved matrix. The output result files were stored for further 

analysis and presentation. 

 

4.4.3. Self-Organizing Map (SOM) 

We chose to include this approach as representative of a typical unsupervised technique. 

Supervised learning techniques, such as MLP, require an external verification that directs 

their learning to produce desired output by example, whereas unsupervised techniques 

require no external verification, they organize the input space by discovering collective 

properties of the input data [22]. The algorithm of SOM is discussed in appendix B-5. 

To apply SOM to our problem, we used the software of [24]. This method produced a 2D 

matrix similar to the one produced from the GA approach, since we used the same feature 

vectors denoted by the two-component vectors: [X:Y]. So we used the same classification 

model used in the GA Section 4.3.2. The training and testing procedure was as following: 

1. As described in the training and testing files selection, we had ten files for 

training and ten files for testing.  

2. The files are properly formatted to comply with the data file SOM format. 
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3. Each of the ten training files was used to train a map, which was saved for later 

testing. The parameters (recommended by [24]) used for training all maps were as 

following: 

§ number of trials: 50 

§ topology type: hex 

§ neighborhood type: Gaussian 

§ x-dimension: 30 

§ y-dimension: 20 

§ training length of first part: 1000 

§ training rate of first part: 0.1 

§ radius in first part: 30 

§ training length of second part: 10000 

§ training rate of second part: 0.01 

§ radius in second part: 1 

4. The produced SOM maps were used to generate their corresponding classifier 

matrices, and the same concept of classifier model designed for the GA approach, 

was used. 

5. Each of the ten test files was tested using the corresponding trained map, and the 

resulted files were saved for further analysis and presentation. 

To illustrate the concept of the produced SOM maps, we would like to analyze a typical 

example, and for a complete reference to the produced maps, please refer to appendix C-

3.  The example is illustrated in Figure 4.23.  The map shown in Figure 4.23 was 

produced by the SOM/Hough method. We can see how the SOM was able to cluster the 
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different types of cracks into four separate regions one per each crack type. The different 

regions are manually separated by a dotted line, to make it easier to distinguish the 

borders of the regions. It was interesting to notice that the produced maps by the SOM 

resembled the maps suggested in the GA approach. 

We illustrated some of the misclassified images on the map. The misclassified images are 

circled by a dotted circle. The SOM color shadings have significance in interpreting the 

relations among clustered classes. The darkness level between adjacent nodes/regions 

reflects the distance between vectors represented by these nodes/regions, therefore the 

lighter the area between them, the similar the nodes/regions. We can see that the map 

tends to build a boundary around each cluster as shown in Figure 4.23. 
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Figure 4.23 Typical sample of maps produced by the SOM 
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5. RESULTS 

The preceding section described the approach we followed to develop our methods to 

address the problem of pavement crack classification. Three different approaches were 

investigated: Multilayer Perceptron (MLP), Genetic Algorithms (GA), and Self 

Organizing Maps (SOM). We used two different image representation techniques: Hough 

Transform, and Crack Hits Projection. We used both representation techniques with each 

of the classification approaches. We divided the input images into two subsets: training 

subset of 400 images and testing subset of 100 images which produced five different 

(training/test) combinations. This setup introduced a rich experimental situation of 30 

different possible combinations to test, and in this section we are going to present them in 

details as following:  

Before presenting results, we would like to explain the standard format we used to 

tabulate our results for all experiments. As a sample we analyzed Table 5.1. A complete 

reference to the results is included in Appendix D. The table is a typical format of results 

of each individual (classifier/image representation/training set/testing set) experiment, 

which contains the following information: 

§ MLP_0: is the label of the table which combines the name of the technique (MLP) 

used to test the given subset of images, and a serial number (_0) to distinguish 

between the different trials. 

§ hghTrain0.dat (400)/hghTest.dat (100): are the training and testing files, 

respectively, used in this trial. As described in the training and testing procedure 

in section 3. 
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§ For each crack type, the table lists the classification distribution of the 25 test 

images, and gives the C/T per each crack type. Finally gives the aggregate 

(average) C/T for the experiment. The column chart, plots the crack type Vs. The 

C/T per that crack type. 

Table 5.1 A sample of MLP results 

hghTrain0.dat 400 samples 

 

    
 

MLP_0 hghTest0.dat 100 samples    

 C/T a b L t Total    

A 0.96 24 1 0 0 25    

B 0.84 0 21 4 0 25    

L 1 0 0 25 0 25    

T 0.88 0 3 0 22 25    

Over all 0.92     100    
 

 Alligator Cracks (a)       Block Cracks (b)       Longitudinal Cracks (l)       Transverse Cracks (t) 
C/T = Number of correctly classified images / Total number of tested images. 
 
In order to provide an overview of the individual experiments, we combined all results of 

each (Classifier/Image representation) combination in an aggregate table. An example is 

illustrated in Table 5.2, which is a typical format for all of the aggregate tables. The table 

contains the following information: 

§ MLP_hough: is the label of the table which combines the name of the classifier 

(MLP), and the image representation method used in this particular experiment. 

§ For each crack type, the table lists the classification distribution of the 125 test 

images used in all of the experiments per that particular (Classifier/Image 

representation) method, and gives the aggregate C/T per each crack type. Finally 

gives the overall aggregate (average) C/T for the (Classifier/Image representation) 
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method. The column chart plots the crack type Vs. The aggregate C/T per that 

crack type. 

Table 5.2 A sample of the aggregate results 
 

       MLP_Hough       

 C/T a b l t total       

A 0.984 123 2 0 0 125       

B 0.928 1 116 5 3 125       

L 0.984 0 2 123 0 125       

T 0.848 10 9 0 106 125       

Over all 0.936     500       
 

 Alligator Cracks (a)       Block Cracks (b)       Longitudinal Cracks (l)       Transverse Cracks (t) 
C/T = Number of correctly classified images / Total number of tested images. 
 

5.1. MLP 

The Hough Method 

The overall classification accuracy of this approach was 93.6% Table D4.1, Appendix 

D4. The lowest accuracy was 92.0% Table D1.1, and the highest was 96% Table D1.4. 

The classification accuracies per crack-type were as fo llowing: for the alligator was 

98.4%, for the block was 92.8%, for the longitudinal was 98.4%, and for the transverse 

was 84.8%. The most recongnizable observation on this method was the relatively low 

classification accuracy for the transverse cracks which was 84.8%, which can be seen 

across the result tables in appendices D1 and D4. 

The Projection Method 

The overall classification accuracy of this approach was 98.6% Table D4.2, Appendix 

D4. The lowest accuracy was 97% Table D1.7, and the highest was 100% Table D1.10. 
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The classification accuracies per crack-type were as fo llowing: for the alligator was 

100%, for the block was 97.6%, for the longitudinal was 98.4%, and for the transverse 

was 98.4%. The results of the projection method were clearly significantly better than 

those of the Hough method, and they were consistent for all crack types. Detailed results 

are found in the appendices D1 and D4. 

 

5.2. GA 

The Hough Method 

The overall classification accuracy of this approach was 89.2% Table D4.3, Append ix 

D4. The lowest accuracy was 87% Table D2.3, and the highest was 91% Table D2.4. The 

classification accuracies per crack-type were as following: for the alligator was 96%, for 

the block was 92.8%, for the longitudinal was 86.4%, and for the transverse was 81.6%. 

We noticed that the performance relatively was the poorest with the transverse cracks at 

81.6%, which was the case in the MLP/Hough method above. 

 

The Projection Method 

The overall classification accuracy of this approach was 98.2% Table D4.4, Appendix 

D4. The lowest accuracy was 97% Table D2.9, and the highest was 99% Table D2.6. The 

classification accuracies per crack-type were as fo llowing: for the alligator was 96.8%, 

for the block was 97.6%, for the longitudinal was 100%, and for the transverse was 

98.4%. Again in this method we see the significantly better accuracy and consistency of 

the projection method compared to the Hough method. 
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5.3. SOM 

The Hough Method 

The overall classification accuracy of this approach was 86% Table D4.5, Appendix D4. 

The lowest accuracy was 82% Table D3.2, and the highest was 87% Table D3.4. The 

classification accuracies per crack-type were as fo llowing: for the alligator was 79.2%, 

for the block was 83.2%, for the longitudinal was 97.6%, and for the transverse was 84%. 

We noticed that the performance relatively was the poorest with the alligator cracks at 

79.2%. 

 

The Projection Method 

The overall classification accuracy of this approach was 98.4% Table D4.6, Appendix 

D4. The lowest accuracy was 97% Table D3.9, and the highest was 99% Table D2.10. 

The classification accuracies per crack-type were as fo llowing: for the alligator was 

100%, for the block was 96.8%, for the longitudinal was 99.2%, and for the transverse 

was 97.6%. Again in this method we see the significantly better accuracy and consistency 

of the projection method compared to the Hough method. 

 

5.4. Automated Thresholding Experiments 

As explained before in Section 4.2, after we had studied some generic automatic 

thresholding, we concluded that we should postpone the automatic-thresholding phase, 

and focus on the image representation and crack classification. After we had promising 

results, it was logical to try to test our developed system, using one of the generic image 

segmentation software [25] to assess the importance of this phase. The complete results 
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are included in Appendix D5. The highest classification accuracy was produced by the 

method of SOM/Hough at 34%. These results strongly suggest that our system is  

sensitive to segmentation accuracy, and that work on developing an adaptive 

segmentation algorithm that integrates properly with the existing system, should form an 

important part of future work. 

 

6. DISCUSSION 

The results from Section 5, show that the best image representation for this study was the 

Projection, which worked significantly better than the Hough method with all of the 

classifier systems. This suggests that simple representations should be considered among 

alternatives when exploring classification. The best classifier model was the 

MLP/Projection at an over all average accuracy of 98.6%, but the other classifiers 

(GA/Projection), and SOM/Projection were not far behind at an over all accuracy of 

98.2%, and 98.4 respectively. From the point of view of comparing the three classifier 

models as supervised MLP & GA vs. non-supervised SOM learning, there no significant 

difference in the results to be reported, they gave very close results and they both were 

satisfactory when used with the Projection method as an image representation technique. 

The aggregate results showed that the worst performance of Hough method was with the 

transverse cracks where the accuracies of the three systems were: 84%, 81.6%, and 84% 

respectively. The transverse cracks were misclassified as alligator and block cracks. 

 

In an attempt to investigate the cases where misclassification occurred, we present twelve 

samples, four per each classifier: 
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Figure 6.1 Misclassified image: type alligator, classified as block. 

 

 
Figure 6.2 Misclassified image: type block, classified as longitudinal 

 

 
Figure 6.3 Misclassified image: type longitudinal, classified as transverse  

 

 
Figure 6.4 Misclassified image: type transverse, classified as longitudinal  
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Figure 6.5 Misclassified image: type block, classified as transverse 

 

 
Figure 6.6 Misclassified image: type transverse, classified as block 

 

 
Figure 6.7 Misclassified image: type transverse, classified as longitudinal  

 

 
Figure 6.8 Misclassified image: type alligator, classified as block 
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Figure 6.9 Misclassified image: type alligator, classified as transverse 

 

 
Figure 6.10 Misclassified image: type block, classified as longitudinal 

 

 
Figure 6.11 Misclassified image: type block, classified as transverse 

 

 
Figure 6.12 Misclassified image: type block, classified as transverse 
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Table 6.1 Samples of misclassified images 
A: alligator B: block L: longitudinal T: transverse 

Case 
No. Classifier 

Feature 
Method Figure Type Classified Nearest Neighbor 

1 MLP Hough 6.1. A B NO 

2 MLP Hough 6.2. B L NO 

3 MLP Projection 6.3. L T NO 

4 MLP Projection 6.4. T L NO 

5 GA Hough 6.5. B T NO 

6 GA Hough 6.6. T B NO 

7 GA Projection 6.7. T L NO 

8 GA Projection 6.8. A B YES 

9 SOM Hough 6.9. A T YES 

10 SOM Hough 6.10. B L YES 

11 SOM Projection 6.11. B T YES 

12 SOM Projection 6.12 B T NO 
 

We analyzed the images illustrated in Figure 6.1 through 6.12, and Table 6.1 We had the 

following observations on the possible causes behind misclassification: 

1. When the crack objects are weak, due to thinness or strong noise. This case can be 

seen in Figures 6.5, and 6.6. 

2. Although the crack patterns appear to be quite strong, the persistent noise can 

confuse the classifier. Figures 6.3, and 6.4. 

3. The nearest-neighbor method is not guaranteed to give accurate results. Table 6.1, 

cases 8 through 11. 

In this section it is helpful to compare our approach and results to other approaches 

presented in Section 2.  

In [12], although their results were perfect, we noticed that their feature extraction 

method was computational expensive. It involves producing a vector of eighteen features 

computed by variety of moments. These moments range from 1st to 3rd order equations. In 
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[27] the overall accuracy of the system was 85%, whereas our lowest accuracy was 

89.2%.  

In [5] we observed that their best classifier network included 60 nodes in the hidden layer 

compared to our system which has only 3 nodes with corresponding less computation 

load. So we believe  our system should perform better in real time processing. Further 

more, even though, we adopted their tiling method and followed similar training and 

testing procedures, the overall of their best classier network had an accuracy of 93.7%, 

whereas our best classifier has 98.6%. In addition, a comparison by crack type is given in 

table 6.2.  

Table 6.2. A comparison by crack type between [5] and our system 

Their system Our system
Alligator 88.00% 100.00%

Block 88.00% 97.60%
Longitudinal 98.00% 98.40%

Transverse 90.00% 98.40%

 

Table 6.2, indicates that our system produced higher classification accuracy, especially 

with alligator and block cracks, which they formed a constraint for the system developed 

in [5]. 

 

7. FUTURE POSSIBILITIES 

During our study, we encountered several potential possibilities for future work, to 

improve our system. Theses possibilities include: 

1. As mentioned earlier, the proposed system would not be fully automated unless we 

achieve automatic thresholding. So this phase is highly recommended to be 
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considered in future work. If we find it suitable, we may design an algorithm to 

automatically find the optimum threshold value for each input image, and do the 

thresholding based on that to extract the cracks objects from the entire image. 

Knowledge about the objects in the scene, the application, and the environment 

should be used in the segmentation algorithm such knowledge includes: 

§ Intensity characteristics of objects. 

§ Sizes of the objects. 

§ Fractions of an image occupied by the objects. 

§ Number of different types of objects appearing in an image. [13] 

In the domain of our problem, these characteristics are not defined,  so we need to 

devise an adaptive algorithm to achieve the automatic thresholding. 

2. Since our study showed that the approach we used to address the problem was 

reliable, and repeatable, therefore we think our system has the potential to be 

expanded to include other subsets of pavement distresses as described in the 

introduction. 

3. Pavement indices require not only classification of distresses, but also computing 

geometric properties such as: width, length and area, etc., so we think it would be 

helpful to investigate the possibility of integrating such features in the future. 

4. Pavement surface may contain numerous foreign objects, such as oil residue, dirt, 

lane markings, vehicle’s tire mark, tree limbs, and other non-distress related items. 

It is important to develop algorithms to correctly distinguish the distresses or cracks 

from these non-distress items. We did not consider this problem in the scope of the 

current study, so we think it is one of the future possibilities that can be considered. 
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5. The special case of cracks oriented at 45o, addressed in image representation 

section, is a potential improvement to be considered in future work. To do that we 

have to consider the following: 

§ In the GA classifier system, considering a third component in the feature 

vector will require us to evolve a three-dimensional matrix and to redesign 

the classification algorithm to adapt this new component. 

§ In MLP and SOM classifier systems, the only change have to be made is to 

add a new component at the input layer. 

§ We can use cascading strategy by using first SOM to reduce the 

dimensionality of the feature vectors from 3D to 2D then use the resulting 

map to evolve the GA classifier matrix. 

6. It is important to address the minimum crack width our system can classify, and to 

work on enhancing this capability, since it was addressed as a problem in the 

discussion section. 

7. It was suggested by a colleague [29], to improve the efficiency of our version of 

nearest-neighbor algorithm in the GA and SOM classification model. The 

suggestion was to pre-fill the null-region in the classifier matrix, do the system 

don’t have to waist time resolving classification in case of a null hit. 

8. It was suggested by [3] that our system may be capable of pavement texture 

classification. Further investigation is required to test the system for this capability. 
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8. SUMMARY 

In summary, we presented a study designed to improve an automated pavement crack 

classification system, by targeting a subset of pavement crack types: longitudinal, 

transverse, block, and alligator cracking. We approached this problem by exploring the 

capabilities of three different approaches: multilayer perceptron (MLP), genetic 

algorithms (GA), and self-organizing maps (SOM). We used computer vision methods 

for image preprocessing (image representation and feature extraction). For crack objects 

segmentation and image filtering we used manual thresholding followed by median 

filtering. We used two different techniques for image representation: 1. image tiling with 

local linear regression to generate a hit pattern that reduces and approximates the original 

crack pattern followed by projecting these hits onto the two principal axis (X & Y). The 

number of projected hits on each axis is added to form a component in the 2D feature 

vectors which characterized the crack patterns. 2. The Hough transform: this approach 

was used on the hit pattern images, which produced a Hough output image that was used 

to characterize crack patterns by detecting the slopes or the orientation of the detected 

Hough lines and then to produce a feature vector that can characterize the crack patterns. 

In this case, the vectors have the form of (Average angle of Hough space: Total number 

of hits). An extensive testing was conducted following a systematic procedure of training 

and testing for all developed classifier using 400 training images and 100 images for 

testing with all possible combinations of (Projection/Hough : MLP/GA/SOM : 

training/testing sets), and the best classifiers gave the following accuracy: Hough/MLP 

93.6%, Projection/MLP 98.6%, Hough/GA 89.2%, Projection/GA 98.2%, Hough/SOM 

86%, and Projection/SOM 98.4%. Since we performed the image thresholding manually, 
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we wanted to test the performance of the best developed classifier systems by testing 

them with automatically- thresholded images using arbitrary image segmentation software 

[26].  The best result among the three classifier systems was: Hough/SOM at 34%. The 

results showed that our system is sensitive to thresholding suggesting that an adaptive  

segmentation technique will be necessary to fully automate the system.  
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Appendix A MLP Algorithm 
 

 
A1. The algorithm of MLP: 
 
 
backProbagation() 
{ 
 initializeWeights(); 
 while( training vectors not finished ) { 
  getNextVector(); 
  feedForward(); 
  computeGradient(); 
  updateWeights(); 
  testTerminationCondition(); 
 } 
} 
 
 
feedForward() 
{ 
 // L = number of layers in the network 
 for( layer = 1 to L, ++layer ){  
  // N = number of nodes per each layer 
  for( node = 1 to N, ++node ) 
   computeNodeOutput(); 
    
 } 
} 
 
  
computeNodeOutput() 
{ 
 // N = number of nodes of preceding layer 
 for( node = 1 to N, ++node ){ 
  findWeightedSum(); 
  computeSigmoid( weightedSum ); 
 } 
} 
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computeGradient() 
{ 
  for( layer = L to 1, --layer){ 
    for( node =  to N, ++node ){ 
      if( layer == L ) 
    err[node] = output[node] – desired[node]; 
   else  
    err[node] =  

     sumof{ err[node,layer+1]*output[node,layer+1]* 
 (1-output[node,layer+1])*weight[node,layer+!]}; 

    } 
  
 for( node = 1 to N, ++node ) 
   gradient[node] = err[node] * output[node] 
      (1-output[node]) * output[node, layer+1]; 
 
  }    
}   
 
 
updateWeights() 
{ 
  for( layer = 1 to L, ++layer ) 
    for( node = 1 to N, ++node ) 
      weight[layer,node] = weight[layer,node] -  
      (learningRate * gradient[layer,node]; 
} 
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Appendix B  Description of common methods 
 

B-1. Median Filter 

The Median Filter is a nonlinear filter which has a result that is not obtained by a 

weighted sum of the neighborhood pixels as opposed to smoothing filters. Median filter 

operates on a local neighborhood by replacing the center pixel by the median value of the 

neighboring pixels. A typical use of median filter is noise removal [9]. An example is 

illustrated in Figure B1.1. The median is found by first sorting neighboring pixels in 

increasing order of the grayscale value and then finding the center of the sorted values 

using the formula: (n+1)/2, where n is the number of neighboring pixels.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B1.1 An example of median filter 
 

  Before median filter   

    30 115 71     

    201 120 13     

    11 223 95     

           

Sorted Pixels 11 13 30 71 95 115 120 201 223  

Sorting index 1 2 3 4 5 6 7 8 9  

 Center of the list = (9+1)/2 = 5, median = pixel number 5 = 95. 

  After median filter   

    30 115 71     

    201 95 13     

    11 223 95     
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B-2 Hough Transform 
 
The Hough transform is a mathematical technique for line detection [9], which is 

expected to be suitable for transforming the binary image into crack lines. The Hough 

transform represents lines using the normal of them ρ  as it is defined in Equation B2.1:  

)sin()cos( ϑϑρ cr +=                                                                     (B2.1) 

Where: 

ρ  = the perpendicular distance between the origin of the quantized space and the target 

line as illustrated in Figure B2.2. It ranges from 0 to 2  N which is the diagonal distance 

of the image assuming it is a square of a parameter of N pixels. 

ϑ  = the angle between the vertical axis in the quantized space (which is the r-axis) 

and ρ . 

r = the row coordinate of the target pixel in the image. 

c = the column coordinate of the target pixel in the image. 

The algorithm can be summarized as following: 

1. Quantize the image space by choosing the desired ρ∆  and ϑ∆  as shown in 

Figure B2.1. 

2. For every point (pixel) find ρ  solving equation B2.1 where (r, c) are the 

coordinates of the pixel in the image matrix and ϑ  varies between the lower limit 

and the upper limit in the Hough space. 

3. For each pair of ( ρ ,ϑ ) in step 2, record the (r, c) pair in the corresponding block 

in the Hough space.  

4. Keep track of the number of recoded pairs (hits) in step 3 per each block in the 

space. 
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5. When the entire (r, c) space is processed, the ( ρ ,ϑ ) space is processed by testing 

each block to check if number of hits exceeded a predefined threshold. All blocks 

satisfying this criterion are marked as lines in the resulting image. 

 

 
Figure B2.1 Target line representation by the normal in Hough transform 

 

 
Figure B2.2 Hough quantized space 
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B-3 MLP 
 
Discussing MLP requires us to have some background about their basic functional 

element, the perceptron, which is a concept biologically inspired from the neuron in the 

human nervous system.   

The perceptron (Figure B3.1) is the basic structural unit of an MLP, which computes a 

weighted sum of the components of the input vector and subtracts a threshold value (θ ) 

from it. The result is then passed to an activation function which can be Hard- limiting 

Figure B3.2-a, or Sigmoid Figure B3.2-b.  

 

Figure B3.1 The perceptron 
 

 
         Figure B3.2-a     Figure B3.2-b 

 1 

?  
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The sigmoid function is defined by Equation B3.1. This function is continuous and the 

steepness of the transition region is determined by the parameter (ß).  

fs(y) = (1 + e –ßy)-1       (B3.1) 

Figure B3.2-b shows the effect of ß using three different values: 0.2, 1.0, 5.0. One of the 

advantages of the sigmoid function is its differentiability. This property is essential for 

the gradient search learning algorithm of the MLP as we will discuss later. 

The operation of the perceptron can be viewed in two ways: 

§ Discriminant function: A pattern recognition problem, where the perceprton 

performs a nonlinear transformation from the input space to the output space which 

is the set of the two recognized classes {0, 1}. 

§ Binary logic unit: it is capable of implementing numerous logic functions, including 

the three fundamental operations of the Boolean algebra: AND, OR, and NOT. 

The capabilities of a single perceptron model are limited to linear decision boundaries 

and simple logic functions. Linear decision boundaries mean that the input space has to 

be linearly separable in order for the single perceptron model to work. However, by 

cascading perceptrons in layers, complex decision boundaries and arbitrary Boolean 

expressions can be achieved. 

 

The Multilayer Perceptron (MLP) 

The structure of the MLP (Figure B3.3) consists of three parts: 

§ Input layer: the first layer of perceptrons that receives the input vector. 

§ Hidden Layers: Located between the input and the output layer. The output of the 

input layer is fed into the first hidden layer; the output of the first layer is fed into 
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the next hidden layer and so on. The number of hidden layers needed varies based 

on the complexity of the application. Often the nodes (perceptrons) of the 

adjacent layers are fully connected. 

§ Output Layer: The multiple nodes in the output layer typically correspond to 

multiple classes for multi-class pattern recognition problem. 

 

MLP Learning Algorithm (Back Probagation): 

The most common approach is the gradient descent algorithm, in which a gradient search 

technique is used to find the network weights that minimize a criterion function. The 

criterion function to be minimized is the Sum-of-Square-Error. A complete derivation of 

the algorithm can be found in [14]. 

 

                      
 

Figure B3.3  MLP Multilayer Perceptron Model 
 

Input Layer Output Layer Hidden Layer 
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The algorithm can be summarized as following [15]: 

Parameters definitions in the algorithm. Parameters are defined for a neuron in layer(l): 

 )( lw  : Synaptic weight vector of a neuron. 

 )( lθ  : Threshold of a neuron. 

 )(lv  : Vector of net internal activity levels of neurons. 

 )( ly  : Vector of function signals of neurons. 

 )( lδ  : Vector of local gradients of neurons. 

  e     : Error vector represented by e1, e2, etc. 

 

1. Initialization: all synaptic weights and thresholds are set to small random 

numbers.  

2. Presentations of Training Examples: Present the network with an epoch of 

training examples. For each example in the set, step 3 and 4 are repeated. 

3. Forward Feed: let a training example in the epoch be [x(n), d(n)], where x(n) is 

the input vector, and d(n) is the desired output vector on the output layer. The 

activation potential and function signals of the network are computed, proceeding 

forward through the network, layer by layer, using the following relation system: 

 
)(l

jv (n) = )()(
0

)1()( nynw
p

i

l
i

l
p∑

=

−       (B3.2) 

 
)( l

iy (n) = 
))(exp(1

1
)( nv l

j−+
      (B3.3) 

 
If the neuron is the first hidden layer, then 
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)0(
iy (n) = jx (n)       (B3.4) 

 
If the neuron is in the output layer (l = L), then 
 

)(L
iy (n) = )(njο        (B3.5) 

 
Hence the error is computed as 
 

)()()( nndne jjj ο−=        (B3.6) 
 

4. Back Propagation: compute the local gradients of the network, proceeding 

backward, layer by layer. 

In the output layer 
 

)](1)[()()( )()( nnnen jj
L

j
L

j οοδ −=         (B3.7) 
 
In a hidden layer 
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Hence adjust the weights: 
 

)()()]1()([)()1( )1()()()()()( nynnwnwnwnw l
j

l
j

l
ji

l
ji

l
ji

l
ji

−+−−+=+ ηδα  (B3.9) 
 
where:  
η  : is the learning-rate parameter 
α : is the momentum constant. 
 
The tradeoff of  η  is a rough approximation for faster processing, or a Better 

approximation for slower processing. In the case where a high learning-rate is 

chosen, α  is introduced to stabilize the system. 

5. Iteration: Iterate the computation by presenting new epochs of training examples 

to the network until the free parameters of the network stabilize their values and 

the average square error computed over the entire training set is at minimum or 

acceptable small value. The order of presentation of training examples should be 
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randomized from epoch to epoch. The momentum and the learning-rate parameter 

are typically adjusted (and usually decreased) as the number of training iterations 

increases. 

Some points need to be considered in MLP model 

1. The weights typically are initialized to small random values, which gives the 

algorithm a safe start. 

2. A simple heuristic technique is used to choose learning rates, which is to make the 

learning rate for each node inversely proportional to the average magnitude of 

vectors feeding to that particular layer. 

3. Termination criteria include: 

§ A target minimum gradient is reached. 

§ The Sum-of-Square-Error falls below a fixed threshold. 

§ When all of the training samples have been correctly classified. 

§ After a fixed number of iterations have been performed. 

§ Cross Validation technique: As usual, the available input space is 

randomly partitioned into a training set and a test set. The training set is 

further partitioned into two subsets: a subset used for estimation the model 

(model training), and a subset used for evaluation the performance of the 

model (model validation); the validation subset is typically 10 to 20% of 

the training set. The goal of this technique is to validate the model on a 

data different from the one used for model estimation. The best model is 

chosen after this validation phase, then the chosen model is trained using 

the full training set [15]. 
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It is worth mentioning that the last approach (Cross Validation) in contrast to all of the 

other approaches is not sensitive to the choice of the parameters. It not only avoids 

premature termination, but can improve the generalization performance. However it is 

computationally intensive. 

 

B-4 Genetic Algorithm (GA) 

Background 

Given some problem, a genetic algorithm (GA) seeks to find solutions to it, as follows. 

Start with an initial generation of candidate solutions to the problem, and then subject this 

generation to evolutionary forces such as survival of the fittest, mating followed by 

crossover, and mutation. The hope is that, over time, better and better candidate solutions 

will surface in the generation. Use the best solution as the working solution. Genetic 

algorithms were devised by (Holland, 1975) and popularized by (Goldberg, 1989) [17]. 

The algorithm begins with a set of solutions (represented by chromosomes) called 

generation. Solutions from one generation are taken and used to form a new generation. 

This is motivated by a hope, that the new generation will be better than the old one. 

Solutions which are then selected to form new solutions (offspring) are selected 

according to their fitness - the more suitable they are the more chances they have to 

reproduce. This is repeated until some condition (for example reaching a given number of 

new generations or improvement of the best solution) is satisfied [18]. 

An abstract GA is described below: 
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1. Start: Generate a random generation of n chromosomes (potential solutions for 

the problem)  

2. Fitness: Evaluate the fitness f(x) of each chromosome x in the generation  

3. New generation: Create a new generation by repeating the following steps until 

the new generation is complete  

§ Selection: Select two parent chromosomes from a generation according      

to their fitness (the better fitness, the bigger chance to be selected)  

§ Crossover: With a crossover probability, crossover the parents to form 

new offspring (children). If no crossover is performed, the offspring is the 

exact copy of parents.  

§ Mutation: With a mutation probability mutate new offspring at each locus 

(position in chromosome).  

§ Accepting: Place new offspring in the new generation.  

4. Replace: Use new generated generation for a further run of the algorithm  

5. Test: If the end condition is satisfied, stop, and return the best solution in current 

generation.  

6. Loop: Go to step 2  [18]. 

Producing generations by crossing over two parents may cause loosing the best 

chromosome from the last generation. Elitism is often used to eliminate this problem. 

This means, that at least one of a generation's best solution, is copied without changes to 

a new generation, so the best solution can survive to the succeeding generation [18].  
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Genetic Algorithms have been shown to be an effective tool to use in data mining and 

pattern recognition. An important aspect of Gas in a learning context is their use in 

pattern recognition [16]. There are two different approaches to applying GA in pattern 

recognition: 

§ Apply a GA directly as a classifier.  

§ Use a GA as an optimization tool for resetting the parameters in other 

classifiers. 

Most applications of GAs in pattern recognition optimize some parameters in the 

classification process. Many researchers have used GAs in feature selection. GAs has 

been applied to find an optimal set of feature weights that improve classification accuracy 

[16]. 

 

B-5 Self-organizing Maps (SOM) 

Background 

In contrast to other supervised ANN architectures like MLP, SOM is an unsupervised 

ANN. In this category of ANN, neighboring cells in a NN compete and develop 

adaptively into specific detectors of different input patterns. It can be pictured as a feature 

map where each cell or local spatial region becomes tuned to a specific domain of the 

input space and so the 2D coordinate system of the developed map spatially becomes 

meaningful in detecting the presence or the absence of a certain input pattern. In his paper 

[19], Kohonen suggest a strong relationship between brain maps and SOM. He describes 

much research that has been done to support his idea of the similarity between them. This 

research has proved that different regions of the brain are mapped to specific functions. 
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One of the key components of SOMs is the Competitive Learning so we wish to give a 

rough description of its algorithm: 

    1.     Input space is described as:  

 ntxx ℜ∈= )( , where t stands for time     (15) 

    2.     The set of reference vectors are: 

           },...,3,2,1,:)({ kimtm n
ii =ℜ∈       (16) 

            where )0(im  is initialized randomly.  

    3. At each instance (t), x(t) is compared with each vector in the space described in 

step 2. Then the best matching )(tmi is updated in away that guarantees it to better 

match the current x(t). The comparison is based on some distance measure 

d(x, im ), which should be decreased to satisfy the previous condition.  

    4. If the index of the best matching vector was found to be (c), then the only altered 

reference vector is cm . The rest of the reference space is left intact. 

    5. The reference space becomes spatially tuned to match different pattern domains in 

the input space. If the input space has a particular probability density distribution 

pdf, then the resulting reference space is located in the input space in such a way 

that approximates this pdf. 

SOM Structure and Algorithm 

§ Selection of the best matching cell 

As shown in Figure B5.1 below, the structure of the SOM consists of a 2D matrix 

of perceptrons ( im : i=1, 2, 3, …, k). The input vector x is connected in parallel to 

all of these perceptrons. For each perceptron im , the weight vector is denoted by: 
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im = [ 1im , 2im , 3im , …, inm ]. As mentioned above, to select the best matching 

cell in the map, a comparison criteria is given by: either the inner produc t between 

(x . im ) or the Euclidean distance between the two vectors. Then the winner with 

the shortest distance is selected to be the best match for the current input vector x. 

§ Adaptation (Updating) of the weight vectors 

Two essential effects of the adaptation learning leading to spatially organized 

maps are to be emphasized: 

ú Spatial concentration of the network activity on the best-match cell and its 

neighborhood. 

ú Further tuning of the best-matching cell and its topological neighbors to the 

current input vector. 

m1 m2 . . . . . m3 m4

. . . . .

. . . . . mk

Input vector (x)

Figure B5.1 SOM Structure  
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Figure B5.2 illustrates the definition of the spatial neighborhood cN around the best-

matching cell at the index c. At each learning step, all cells within cN  are updated, 

whereas cells outside cN  are left intact. Best match-cell is found by using the following 

formula: 

|||| cmx −  = ||}min{|| imx −         (17) 

The radius of cN  varies with time; it starts wide and shrinks monotonically with time 

(Figure B5.2). Eventually the radius will shrink to 0, which means cN  = {c}. 

The updating process can be expressed as: 
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     (18) 

Where )(tα is a scalar representing the adaptation gain range : 0< )(tα <1. )(tα  decreases 

with time during the learning process. As an alternative to the binary behavior of the 
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updating function, a bell-shaped distribution can be employed. This function is typically 

used in biological models to represent the normal distribution phenomena. 

The goal of the SOM algorithm is to learn a feature map from the spatially continuous 

input space to the low dimensional spatial discrete output space, which is formed by 

arranging the computational neurons into a grid. Once the SOM algorithm has converged, 

the feature map displays important statistical characteristics of the input space. Given an 

input vector x, the feature map φ provides the coordinates of the image of that neuron in 

the output space. The following give an overview of  several properties of the SOM: 

 

§ Approximation of the input space 

We can state the aim of the SOM as storing a large set of input vectors {x} by finding a 

smaller set of prototypes {mi} so as to provide a good approximation to the original input 

space. The theoretical basis of this idea is rooted in vector quantization theory. In effect 

the goodness of the approximation is given by the total squared distance D = ∑(x-mi)2, 

which we try to minimize. The weight updating algorithm guarantees generating a good 

approximation to the input space. 

 

§ Topological ordering 

The topological ordering property is a direct consequence of the weight update equation 

that forces the weight vector mi(x)  of the winning neuron I(x) to move toward the input 

vector x. The crucial factor is that the weight updates also move the weight vector Wj of 

the closest neighboring neurons j along with the winning neuron I(x). Together these 

weight changes cause the whole output space to become appropriately ordered. 
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§ Density Matching 

The feature map reflects variations in the statistics of the input distribution regions in the 

input space from which the sample training vectors x are drawn with high probability of 

occurrence are mapped onto larger domains of output space. And therefore with better 

resolution than regions of input space from which training vectors are drawn with low 

probability. So the SOM algorithm doesn’t match the input density exactly 

 

§ Feature selection: 

Given data from an input space with a non-linear distribution, the SOM is able to select a 

set of best features for approximating the underlying distribution. The SOM provides a 

discrete approximation of finding so-called principal curves or princ ipal surfaces, and 

may therefore be viewed as a non- linear generalization of PCA principal component 

analysis. 

Practical hints for applying SOM algorithm 

Kohonen gave experimental and practical hints in his paper to safely and efficiently apply 

his algorithm these hints include: 

§ Number of input vectors in the training set. 

§ Number of iterations of the algorithm. 

§ )(tα and its model. 

§ cN  and its different topologies. 
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Appendix C  Training Results  
 
C-1 MLP Finding the optimal number of hidden nodes  
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C-2  GA Best evolved chromosomes 
 

 
 

Prj0 
 

 
Prj1 
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Prj2 
 

 
Prj3 
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Prj4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
C-3 SOM Best generated maps
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Figure C3.1 The 1st SOM map
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Figure C3.2 The 2nd SOM map



  

      97 

 
 

Figure C3.3 The 3rd SOM map
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Figure C3.4 The 4th SOM map
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Figure C3.5 The 5th SOM map
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Figure C3.6 The 6th SOM map
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Figure C3.7 The 7th SOM map
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Figure C3.8 The 8th SOM map
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Figure C3.9 The 9th SOM map
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Figure C3.10 The 10th SOM map
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Appendix D   Testing Results 
 
D-1 MLP Results 
 
Legend Applies to all tables in the results appendix 
 

 Alligator Cracks (a)       Block Cracks (b)       Longitudinal Cracks (l)       Transverse Cracks (t) 
C/T = Number of correctly classified images / Total number of tested images. 
 
 
Table D-1.1 Results of the 1st MLP network 

hghTrain0.dat 400 samples 

 

    
 

MLP_1 hghTest0.dat 100 samples    

 C/T a b l t total    

A 0.96 24 1 0 0 25    

B 0.84 0 21 4 0 25    

L 1 0 0 25 0 25    

T 0.88 0 3 0 22 25    

Over all 0.92     100    
 
Table D-1.2 Results of the 2nd MLP network 

hghTrain1.dat 400 samples 

 

    MLP_2 hghTest1.dat 100 samples    

 C/T a b l t total    

A 0.96 24 1 0 0 25    

B 0.92 0 23 1 1 25    

L 1 0 0 25 0 25    

T 0.88 0 3 0 22 25    

Over all 0.94     100    
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Table D-1.3 Results of the 3rd MLP network 

hghTrain2.dat 400 samples 

 

    MLP_3 hghTest2.dat 100 samples    

 C/T a B l t total    

a 1 25 0 0 0 25    

b 1 0 25 0 0 25    

l 0.96 0 1 24 0 25    

t 0.76 5 1 0 19 25    

Over all 0.93     100    
          

 
 
Table D-1.4 Results of the 4th MLP network 

hghTrain3.dat 400 samples 

 

      MLP_4 hghTest3.dat 100 samples      

 C/T a B l t total      

a 1 25 0 0 0 25      

b 0.92 1 23 0 1 25      

l 1 0 0 25 0 25      

t 0.92 2 0 0 23 25      

Over all 0.96     100      
            

 
Table D-1.5 Results of the 5th MLP network 

hghTrain4.dat 400 samples 

 

   MLP_5 hghTest4.dat 100 samples   

 C/T a b l t total   

a 1 25 0 0 0 25   

b 0.96 0 24 0 1 25   

l 0.96 0 1 24 0 25   

t 0.8 3 2 0 20 25   

Over all 0.93     100  
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Table D-1.6 Results of the 6th MLP network 
 

prjTrain0.dat 400 samples 

 

   MLP_6 prjTest0.dat 100 samples   

 C/T a b l t total   

a 1 25 0 0 0 25   

b 1 0 25 0 0 25   

l 0.96 0 0 24 1 25   

t 1 0 0 0 25 25   

Over all 0.99     100   

         
Table D-1.7 Results of the 7th MLP network 

 

prjTrain1.dat 400 samples 

 

   MLP_7 prjTest1.dat 100 samples   

 C/T a b l t total   

a 1 25 0 0 0 25   

b 0.92 0 23 0 2 25   

l 1 0 0 25 0 25   

T 0.96 0 0 1 24 25   

Over all 0.97     100   

         
Table D-1.8 Results of the 8th MLP network 

 

prjTrain2.dat 400 samples 

 

   MLP_8 prjTest2.dat 100 samples   

 C/T a b l t total   

a 1 25 0 0 0 25   

b 1 0 25 0 0 25   

l 0.96 0 1 24 0 25   

t 1 0 0 0 25 25   

Over all 0.99     100   
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Table D-1.9 Results of the 9th MLP network 

prjTrain3.dat 400 samples 

 

   MLP_9 prjTest3.dat 100 samples   

 C/T a b l t total   

a 1 25 0 0 0 25   

b 0.96 1 24 0 0 25   

l 1 0 0 25 0 25   

t 0.96 0 1 0 24 25   

Over all 0.98     100   
 
 
Table D-1.10 Results of the 10th MLP network 

prjTrain4.dat 400 samples 

 

    MLP_10 prjTest4.dat 100 samples    

 C/T a B l t total    

a 1 25 0 0 0 25    

b 1 0 25 0 0 25    

L 1 0 0 25 0 25    

T 1 0 0 0 25 25    

Over all 1     100    
 
D-2  SOM Results 
 
Table D-2.1 Results of the 1st SOM 

hghTrain0.dat 
400 

samples 

 

      

SOM_1 hghTest0.dat 
100 

samples      

 C/T a B L t total      

A 0.68 17 0 0 8 25      

B 0.72 0 18 3 4 25      

L 1 0 0 25 0 25      

T 0.88 0 3 0 22 25      

Over all 0.82     100      
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Table D-2.2 Results of the 2nd SOM 

hghTrain1.dat 
400 

samples 

 

      

SOM_2 hghTest1.dat 
100 

samples      

 C/T a b l t total      

a 0.68 17 1 0 7 25      

b 0.88 1 22 0 2 25      

l 0.96 0 1 24 0 25      

t 0.88 0 3 0 22 25      

Over all 0.85     100      
 
Table D-2.3 Results of the 3rd SOM 

hghTrain2.dat 
400 

samples 

 

      

SOM_3 hghTest2.dat 
100 

samples      

 C/T a b l t total      

a 0.96 24 0 0 1 25      

b 0.8 0 20 0 5 25      

l 0.92 0 2 23 0 25      

t 0.8 5 0 0 20 25      

Over all 0.87     100      

            
Table D-2.4 Results of the 4th SOM 

hghTrain3.dat 
400 

samples 

 

      

SOM_4 hghTest3.dat 
100 

samples      

 C/T a b l t total      

a 0.76 19 1 0 5 25      

b 0.8 0 20 0 5 25      

l 1 0 0 25 0 25      

t 0.88 2 1 0 22 25      

Over all 0.86     100      
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Table D-2.5 Results of the 5th SOM 

hghTrain4.dat 
400 

samples 

 

      

SOM_5 hghTest4.dat 
100 

samples      

 C/T a b l t total      

a 0.88 22 0 0 3 25      

b 0.96 0 24 0 1 25      

l 1 0 0 25 0 25      

t 0.76 2 4 0 19 25      

Over all 0.9     100      
 
Table D-2.6 Results of the 6th SOM 

prjTrain0.dat 400 samples 

 

      

SOM_6 prjTest0.dat 100 samples      

 C/T a b l t total      

a 1 25 0 0 0 25      

b 0.92 0 23 1 1 25      

l 1 0 0 25 0 25      

t 1 0 0 0 25 25      

Over all 0.98     100      

            
Table D-2.7 Results of the 7th SOM 

prjTrain1.dat 400 samples 

 

     

SOM_7 prjTest1.dat 100 samples     

 C/T a b l t total     

a 1 25 0 0 0 25     

b 1 0 25 0 0 25     

l 1 0 0 25 0 25     

t 0.96 0 0 1 24 25     

Over all 0.99     100     
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Table D-2.8 Results of the 8th SOM 

prjTrain2.dat 400 samples 

 

      

SOM_8 prjTest2.dat 100 samples      

 C/T a B l t total      

a 1 25 0 0 0 25      

b 1 0 25 0 0 25      

l 0.96 0 1 24 0 25      

t 1 0 0 0 25 25      

Over all 0.99     100      
 
 
Table D-2.9 Results of the 9th SOM 

prjTrain3.dat 400 samples 

 

      

SOM_9 prjTest3.dat 100 samples      

 C/T a B l t total      

a 1 25 0 0 0 25      

b 0.96 1 24 0 0 25      

l 1 0 0 25 0 25      

t 0.92 0 2 0 23 25      

Over all 0.97     100      
 
Table D-2.10 Results of the 10th SOM 

prjTrain4.dat 400 samples 

 

       

SOM_10 prjTest4.dat 100 samples       

 C/T a B l t total       

a 1 25 0 0 0 25       

b 0.96 0 24 1 0 25       

l 1 0 0 25 0 25       

t 1 0 0 0 25 25       

Over all 0.99     100       
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D3      GA Results 
 
Table D-3.1 Results of the 1st GA Matrix 

hghTrain0.dat 400 samples 

 

     GA_1 hghTest0.dat 100 samples     

 C/T a b l t total     

a 0.96 24 1 0 0 25     

b 0.96 0 24 0 1 25     

l 0.84 0 4 21 0 25     

t 0.88 0 3 0 22 25     
Over all 0.91     100     

           
 
Table D-3.2 Results of the 2nd GA Matrix 

hghTrain1.dat 400 samples 

 

     GA_2 hghTest1.dat 100 samples     

 C/T a B l t total     

a 0.88 22 3 0 0 25     

b 0.92 0 23 0 2 25     

l 0.84 0 4 21 0 25     

t 0.88 0 3 0 22 25     
Over all 0.88     100     

           
Table D-3.3 Results of the 3rd A Matrix 

hghTrain2.dat 400 samples 

 

     GA_3 hghTest2.dat 100 samples     

 C/T a B l t total     

a 1 25 0 0 0 25     

b 0.96 0 24 0 1 25     

l 0.8 0 5 20 0 25     

t 0.72 4 3 0 18 25     
Over all 0.87     100     
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Table D-3.4 Results of the 4th GA Matrix 

hghTrain3.dat 400 samples 

 

     GA_4 hghTest3.dat 100 samples     

 C/T a b l t total     

a 0.96 24 1 0 0 25     

b 0.88 0 22 0 3 25     

l 0.92 0 2 23 0 25     

t 0.88 1 2 0 22 25     
Over all 0.91     100     

           
Table D-3.5 Results of the 5th GA Matrix 

hghTrain4.dat 400 samples 

 

    GA_5 hghTest4.dat 100 samples    

 C/T a b l t total    

a 1 25 0 0 0 25    

b 0.92 0 23 0 2 25    

l 0.92 0 2 23 0 25    

t 0.72 2 5 0 18 25    
Over all 0.89     100    

          
 

Table D-3.6 Results of the 6th GA Matrix 
 

prjTrain0.dat 400 samples 

 

     GA_6 prjTest0.dat 100 samples     

 C/T a B l t total     

a 0.96 24 1 0 0 25     

b 1 0 25 0 0 25     

l 1 0 0 25 0 25     

t 1 0 0 0 25 25     
Over all 0.99     100     
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Table D-3.7 Results of the 7th GA Matrix 

prjTrain1.dat 400 samples 

 

     GA_7 prjTest1.dat 100 samples     

 C/T a B l t total     

a 0.96 24 1 0 0 25     

b 1 0 25 0 0 25     

l 1 0 0 25 0 25     

t 0.96 0 0 1 24 25     
Over all 0.98     100     

           
Table D-3.8 Results of the 8th GA Matrix 

prjTrain2.dat 400 samples 

 

     GA_8 prjTest2.dat 100 samples     

 C/T a B l t total     

a 1 25 0 0 0 25     

b 0.92 2 23 0 0 25     

l 1 0 0 25 0 25     

t 1 0 0 0 25 25     
Over all 0.98     100     

           
Table D-3.9 Results of the 9th GA Matrix 

prjTrain3.dat 400 samples 

 

     GA_9 prjTest3.dat 100 samples     

 C/T a b l t total     

a 0.96 24 1 0 0 25     

b 0.96 1 24 0 0 25     

l 1 0 0 25 0 25     

t 0.96 0 1 0 24 25     
Over all 0.97     100     
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Table D-3.10 Results of the 10th GA Matrix 

prjTrain4.dat 400 samples 

 

     GA_10 prjTest4.dat 100 samples     

 C/T a b l t total     

a 0.96 24 1 0 0 25     

b 1 0 25 0 0 25     

l 1 0 0 25 0 25     

t 1 0 0 0 25 25     
Over all 0.99     100     

 
D4  Aggregate Results 
 
Table D4.1 Aggregate results of MLP/Hough method 

 

      MLP_Hough      

 C/T a b l t total      

A 0.984 123 2 0 0 125      

B 0.928 1 116 5 3 125      

L 0.984 0 2 123 0 125      

T 0.848 10 9 0 106 125      

Over all 0.936     500      
 
Table D4.2 Aggregate results of MLP/Projection method 

 

      MLP_Projection      

 C/T a b l t total      

A 1 125 0 0 0 125      

B 0.976 1 122 0 2 125      

L 0.984 0 1 123 1 125      

T 0.984 0 1 1 123 125      

Over all 0.986     500      
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Table D4.3 Aggregate results of GA/Hough method 
 

      GA_Hough      

 C/T a b l t total      

A 0.96 120 5 0 0 125      

B 0.928 0 116 0 9 125      

L 0.864 0 17 108 0 125      

T 0.816 7 16 0 102 125      

Over all 0.892     500      
 
 
Table D4.4 Aggregate results of GA/Projection method 

 

      GA_Projection      

 C/T a b l t total      

A 0.968 121 4 0 0 125      

B 0.976 3 122 0 0 125      

L 1 0 0 125 0 125      

T 0.984 0 1 1 123 125      

Over all 0.982     500      
 
 
 
Table D4.5 Aggregate results of SOM/Hough method 

 

      SOM_Hough      

 C/T a b l t total      

A 0.792 99 2 0 24 125      

B 0.832 1 104 3 17 125      

L 0.976 0 3 122 0 125      

T 0.84 9 11 0 105 125      

Over all 0.86     500      
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Table D4.6 Aggregate results of SOM/Projection method 
 

      SOM_Projection      

 C/T a b l t total      

A 1 125 0 0 0 125      

B 0.968 1 121 2 1 125      

L 0.992 0 1 124 0 125      

T 0.976 0 2 1 122 125      

Over all 0.984     500      
 
 
D-5  The experiments of automatically thresholded images 
 
Table D-1 MLP/Hough tested with the auto-thresh 500 images 

 

     MLPhgh_BIN500     

 correct/total a b l t total     

A 0 0 0 0 125 125     

B 0.072 0 9 0 116 125     

L 0.016 0 4 2 119 125     

T 0.904 0 12 0 113 125     

Over all 0.248     500     
           

 
 
Table D-2 MLP/Projection tested with the auto-thresh 500 images 

 

     MLPprj_BIN500     

 correct/total a b l t total     

a 1 125 0 0 0 125     

b 0 120 0 0 5 125     

l 0 123 0 0 2 125     

t 0 123 2 0 0 125     

Over all 0.25     500     
           
           

 



  

    118 

Table D-3 GA/Hough tested with the auto-thresh 500 images 
 

     GAhgh_BIN500     

 correct/total a b l t total     

a 0.992 124 1 0 0 125     

b 0.096 111 12 0 2 125     

l 0.016 116 7 2 0 125     

t 0.08 103 12 0 10 125     

Over all 0.296     500     
           

 
 
Table D-4 GA/Projection tested with the auto-thresh 500 images 

 

     GAprj_BIN500     

 correct/total a b l t total     

a 0.992 124 1 0 0 125     

b 0.072 111 9 5 0 125     

l 0.008 114 9 1 1 125     

t 0.008 106 17 1 1 125     

Over all 0.27     500     
           

 
 
Table D-5 SOM/Hough tested with the auto-thresh 500 images 

 

     SOMhgh_BIN500     

 correct/total a b l t total     

a 0.72 90 0 0 35 125     

b 0.08 60 10 0 55 125     

l 0 75 0 0 50 125     

t 0.56 55 0 0 70 125     

Over all 0.34     500     
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Table D-6 SOM/Projection tested with the auto-thresh 500 images 
 

     SOMprj_BIN500     

 correct/total a b l t total     

a 1 125 0 0 0 125     

b 0.08 110 10 0 5 125     

l 0.008 115 8 1 1 125     

t 0.008 105 18 1 1 125     

Over all 0.274     500     
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Appendix E System Architecture  
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