
Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the require-
ments for the degree of Master of Science.

Hossein Hakimzadeh, Ph.D.

Liguo Yu, Ph.D.

Michael R Scheessele, Ph.D.

Yu Song, Ph.D.

May 18, 2009

IU–ADVISE: A WEB BASED ADVISING
TOOL FOR ACADEMIC ADVISORS AND

STUDENTS

Truong Quoc Hung

Submitted to the faculty of the University Graduate School
in partial fulfillment of the requirements

for the degree of

Master of Science

in the Department of Computer and Information Science
Indiana University

May 18, 2009

Copyright 2009
Truong Quoc Hung

ALL RIGHTS RESERVED

i

Abstract
Academic advising is an important activity of an academic institution. It guides the stu-

dents to explore potential careers, academic disciplines and opportunities in the college

environment. An accurate and full featured advising system can be an effective tool to both

students and faculty advisors. The dynamic nature of academic programs, especially in

regards to changes in the general education and other degree requirements, poses a con-

tinuous challenge to faculty advisors to remain up-to-date. The goal of this thesis is to

implement a web-based advising system which facilitates academic advisors in their ef-

forts to providing quality, accurate and consistent advising services to their students. The

proposed system was implemented using a set of open source software packages to create

a low cost, flexible, and customizable system.

ii

Acknowledgements

In the completing of this graduate project I have been fortunate to have the help, support and

encouragement from many people. I would like to acknowledge them for their cooperation.

I wish to express deep heart-felt gratitude to my project advisor, Dr. Hossein Hakimzadeh,

Ph.D., Director of Informatics, for guiding and assisting me through every step of the pro-

cess with helpful knowledge and support.

I would like to thank Dr. Liguo Yu, Dr. Yu Song and Dr. Michael R Scheessele,

my thesis committee members, who showed immense patience and understanding through

detailed review and suggestions.

I am grateful to Dr. Robert Batzinger, Ph.D., Informatics Lab Supervisor, for explaining

difficult aspects of PHP, web programming and LATEX.

I owe my most sincere gratitude to all staffs and my friends who helped me during my

studies and work at IU South Bend.

I would like to thank my grandmother, uncles, aunts, and cousins who have been con-

stantly provided me with various forms of support since the first day I came to the United

States.

I owe my loving thanks to Huong Xuan Hoang Thi and her family for their encourage-

ment and understanding.

Lastly and most importantly, I wish to thank my parents and brother, Dieu Hien Thi

Nguyen, Thi Truong and Dung Truong. Their support and love that helped me overcome

difficulties, enjoy my studies and achieve my goals.

iii

Contents

List of Tables . v

List of Figures . vii

1. Introduction . 1

2. Literature Review . 3

3. Project Design . 7

3.1. Privacy Policy . 7

3.2. Data Model . 8

3.3. Database Design . 10

3.4. Process Model . 34

3.5. User Interface . 62

4. Implementation Technologies . 80

4.1. Application Architecture . 80

4.2. Ajax . 82

4.3. Apache Web Server . 85

4.4. Server-Side Scripting with PHP . 87

4.5. MySQL . 90

4.6. Design Patterns . 94

4.7. MVC in Zend Framework Implementation . 97

5. Conclusion . 100

Appendix A. Zend Framework . 102

A.1. MVC Implementation Classes . 103

A.2. Useful Classes from Zend Framework . 113

Bibliography . 118

iv

List of Tables

Table 3.1. SQL table structure for campus 10

Table 3.2. SQL table structure for campus_reqs 11

Table 3.3. SQL table structure for admin_role 12

Table 3.4. SQL table structure for admin_personnel 13

Table 3.5. SQL table structure for college 14

Table 3.6. SQL table structure for college_reqs 15

Table 3.7. SQL table structure for course_relationship 16

Table 3.8. SQL table structure for pre_co_req 16

Table 3.9. SQL table structure for degree_type 17

Table 3.10. SQL table structure for department 18

Table 3.11. SQL table structure for communication_type 19

Table 3.12. SQL table structure for access_level 19

Table 3.13. SQL table structure for course 20

Table 3.14. SQL table structure for academic_program 21

Table 3.15. SQL table structure for advisor 22

Table 3.16. SQL table structure for advise 23

Table 3.17. SQL table structure for advisor_remark 24

Table 3.18. SQL table structure for enrollment 25

Table 3.19. SQL table structure for satisfied_by 26

Table 3.20. SQL table structure for detailed_requirement 27

Table 3.21. SQL table structure for requirements 28

Table 3.22. SQL table structure for degree_req_categories 29

Table 3.23. SQL table structure for declared_program 30

Table 3.24. SQL table structure for student 31

Table 3.25. SQL table structure for completion_method 32

Table 3.26. SQL table structure for semester 32

Table 3.27. SQL table structure for actionlog 33

v

Table 4.1. MVC implementations for different languages 97

vi

List of Figures

Figure 2.1. SIS introduction page . 4

Figure 2.2. Part of a SIS unofficial transcript page 5

Figure 2.3. Part of a SIS what-if report 5

Figure 3.1. ER Diagram of IU Advisee 9

Figure 3.2. Functional Decomposition Diagram 35

Figure 3.3. Context Data Flow Diagram of IU-Advise system 37

Figure 3.4. Student - View Degree Audit Context DFD 38

Figure 3.5. Student - View Degree Audit Detailed DFD 39

Figure 3.6. Student - View Unofficial Transcript Context DFD 40

Figure 3.7. Student - View Unofficial Transcript Detailed DFD 41

Figure 3.8. Student - View Grades Context DFD 42

Figure 3.9. Student - View Grades Detailed DFD 43

Figure 3.10. Student - View Advisor Remarks Context DFD 44

Figure 3.11. Student - View Advisor Remarks Detailed DFD 45

Figure 3.12. Advisor - View Advisor Remarks Context DFD 46

Figure 3.13. Advisor - View Advisor Remarks Detailed DFD 47

Figure 3.14. Advisor - View Degree Audit Context DFD 48

Figure 3.15. Advisor - View Degree Audit Detailed DFD 49

Figure 3.16. Advisor - View Unofficial Transcript Context DFD 51

Figure 3.17. Advisor - View Unofficial Transcript Detailed DFD 52

Figure 3.18. Advisor - View Grades Context DFD 53

Figure 3.19. Advisor - View Grades Detailed DFD 54

Figure 3.20. Advisor - Create Advisor Remark Context DFD 55

Figure 3.21. Advisor - Create Advisor Remark Detailed DFD 56

Figure 3.22. Advisor - Modify Advisor Remark Context DFD 58

Figure 3.23. Advisor - Modify Advisor Remark Detailed DFD 59

Figure 3.24. Advisor - Remove Advisor Remark Context DFD 60

vii

Figure 3.25. Advisor - Remove Advisor Remark Detailed DFD 61

Figure 3.26. Chosen role screen for IU-Advise 62

Figure 3.27. Login form for an advisor 63

Figure 3.28. Server validation message 63

Figure 3.29. Client validation message 63

Figure 3.30. Advisor index page . 64

Figure 3.31. Advisor information tab 64

Figure 3.32. Student demographic information tab 65

Figure 3.33. Latest admission information tab 66

Figure 3.34. Test out information tab 66

Figure 3.35. Advisor remark list . 67

Figure 3.36. Personal advisor remark list 68

Figure 3.37. Add new advisor remark form 68

Figure 3.38. Choose a user advisor remark 69

Figure 3.39. Load data into form . 70

Figure 3.40. Choose multiple user advisor remark 70

Figure 3.41. Only list valid records . 71

Figure 3.42. Chosen records for activating or deactivating 71

Figure 3.43. Degree audit result . 72

Figure 3.44. Degree audit detail tab . 72

Figure 3.45. Input for producing degree what-if report 73

Figure 3.46. Degree what-if report details 74

Figure 3.47. Excluded courses report 74

Figure 3.48. Advisor view grades . 75

Figure 3.49. Unofficial transcript detail 76

Figure 3.50. Student index page . 76

Figure 3.51. Student advisor remark list 77

Figure 3.52. Student degree audit . 77

Figure 3.53. Student degree audit details 78

Figure 3.54. Student degree what-if report 78

viii

Figure 3.55. Student view grade report 79

Figure 3.56. Student view unofficial transcript 79

Figure 4.1. Architecture of the proposed system 81

Figure 4.2. AJAX (right) and traditional model (left) 83

Figure 4.3. AJAX (bottom) and traditional model (top) 84

Figure 4.4. Server Share among the Million Busiest Sites, March 2009 86

Figure 4.5. Structure of MVC model . 95

Figure 4.6. Structure of Student class 95

Figure 4.7. Zend implementation of MVC design pattern 98

Figure A.1. Dispatching cycle of Zend Framework 103

Figure A.2. Logical model of Factory design pattern 108

ix

1. Introduction

The main objective of academic advising is to guide, motivate and support students

as they explore their potential and make precise academic choices in order to satisfy stu-

dents’ needs and comply with academic policies [1]. To achieve these objectives, IU South

Bend employs the direct communication between advisors and students as the main ad-

vising system. Advisors are typically faculty or professional advisors employed by an

academic unit. A normal advising session consists of meetings between an advisor and a

student. On the basis of these meetings, the student makes decisions about class schedules,

choosing an academic major or minor, planning for graduation and many other academic

related activities. These important decisions are made based on information about previ-

ously completed courses, degree requirements, academic policies, and offered courses in

the upcoming semester provided by advisors balanced against the student’s work schedule

and other interests or commitments.

The current academic advising system, however, has encountered some problems [2].

Among these, there are some noticeable points. First, academic advisors serve as ma-

jor and comprehensive resources for students to utilize, and therefore need to spend time

understanding and updating their knowledge about degree requirements and academic poli-

cies as well as familiarizing themselves with students’ progress toward academic degrees

prior to any advising period. This is a time-consuming task for any advisor especially when

students far outnumber their advisors. Second, a faculty advisor may not be able to keep

up with new academic policies, programs and/or degree requirements as they may have

several duties during an advising period adding to the difficulties in updating information.

This situation can lead to inconsistent information among advisors. Third, most of the time,

advisors answer recurrent questions about trivial class scheduling. In fact, these questions

could be answered easily by students themselves, if useful information about class sched-

ules and previously completed courses were available and easy to access. Accordingly,

1

1. INTRODUCTION 2

there should be a tool for helping students to take advantage of authorized part of academic

information before coming to their advisors. Finally, computer-literate students would fre-

quently like to have more electronic interaction for advising. This is an important factor

that needs to be taken into consideration because the students are customers of the services

both directly and indirectly [3].

Although there are some problems in the current advising system, faculty mentors and

advisors cannot be replaced completely by a computer-based system. The reason is that

the academic advising process requires professional knowledge of academic disciplines

to satisfy questions about a specific course structure, teaching methods, etc. Moreover,

the students do not come to the advisors’ offices for only course selection, but also for

recommendation while they decide their majors and careers. For these types of questions,

an academic advisor with intensive and proficient knowledge about a specific field of study

is the best source of valuable information in this regard. However, this information cannot

be stored and interpreted from static data held in a database.

This thesis attempts to implement a web-based advising system known as “IU-Advise”.

The system supports following activities for an authenticated and authorized student or

advisor:

• View or print an unofficial transcript;

• View or print degree audit that shows the progress toward a degree and identifies

unmet requirements;

• View or print students’ advising records;

• Add or modify advising information;

• View the degree requirements for a given program in a given academic year;

• View what-if report which shows how previously completed courses would fit into

a new degree program;

It is hoped that the proposed system would become a useful tool for both advisors and

students and will facilitate the advising process.

2. Literature Review

Many universities and colleges are applying computer technology to create useful tools

and complete systems that improve the traditional academic advising system. There have

been many levels and means for applying computer technology. The basic level is to de-

velop a simple tool that can produce reports or cover a simple task of the advising process.

The higher level is the complete software system that supports the complete advising pro-

cess.

For the basic level, one useful and common tool is a degree audit reporting system

(DARS). DARS, which was developed by Miami University in 1985 [4], produces a degree

audit which shows all the requirements of a specific academic degree, the courses that sat-

isfy those requirements and the progress of a student toward the degree. This is a small and

effective tool for both advisors and students in the advising process. DARS has been pur-

chased and adapted by many academic institutions such as Ohio University [5], University

of San Diego[6], University of Missouri - St. Louis [7] and etc.

In the higher level, the AdvisorTrac of RedRock Software [8] is a commercial soft-

ware that supports scheduling, reviewing, cancelling advising appointments, storing demo-

graphic records and keeping track of advising records. AdvisorTrac is currently being used

by a number of universities, among of which are the University of Louisville[9], Western

Kentucky University[10], Indiana University-Purdue University Fort Wayne [11] and other

colleges.

At the software system level, redLatern, an auxiliary of Miami University [12], developed

a commercial software solution based on the DARS for both students and advisors. The

solution includes 3 components: u.select, u.direct, and u.achieve. This education software

solution provides tools for most advising activities, such as planning courses, selecting

courses, keeping track of grades, generating degree audits, and other common advising

tasks with unified and consistent information throughout an academic institution.

3

2. LITERATURE REVIEW 4

In addition to these specialized software solutions, most comprehensive administrative

software systems such as PeopleSoft, SCT Banner and Oracle also have an academic ad-

visement module. The current OneStart application portal of IU South Bend provides an

access to Student Self Service. Student Self Service, based on PeopleSoft’s Human Re-

source Management System (HRMS) and Student Information System (SIS), provides two

advising services: View My Advisors and View My Advisement Reports [13]. Figures 2.1,

2.2 and 2.3 show some of current SIS reports. The View My Advisement Reports function

allows a student to view a degree audit with or without a unofficial transcript. It also pro-

duces a what-if report that shows how current enrolled courses could be applied to a new

major when a student wants to change his or her major. A course list what-if report of this

service determines if selected courses fit into any requirement of a given degree program.

These two reports need to be polished and reorganized in order to provide more useful

information than the current version. The View My Advisor offers a list of advisors of a

given student and allows the student to notify one or many advisors.

Figure 2.1. SIS introduction page

2. LITERATURE REVIEW 5

Figure 2.2. Part of a SIS unofficial transcript page

Figure 2.3. Part of a SIS what-if report

A commercial software package is not the only way to meet the needs of improving

the quality of advising services. There are many computer software systems developed in

- house. In 1999, the Department of Computer Science and Engineering (CSE) of Florida

Atlantic University (FAU) started working on a project of a web-based advising system.

This system is composed of three components [2]:

2. LITERATURE REVIEW 6

• The FAQ component archives and presents the most common questions that can be

answered without intensive knowledge about policies, requirements and courses.

• The Course component is used by advisors and administrators to maintain course

information.

• The Advising component captures all the information of the advising appoint-

ments between advisors and students. It then combines with the data in the data-

base to produce a final result of advising.

In the same manner, Indiana University developed and used Indiana Student Information

Transaction Environment [2, 14] - INSITE on some Indiana University campuses before

OneStart [2, 14] was employed. INSITE offered the following features:

• Producing an advising report for a student’s current major;

• Producing an advising report for a different major;

• Producing an advising report for a special purpose program;

• Viewing how in-progress courses would apply to a student’s advising report;

• Adding future courses, grades, and hours to determine affects on the advising

report;

3. Project Design

In order to develop an application, a conceptual design was produced and reviewed

carefully. A conceptual design included two components: the data model and the process

model. The data model determined what information was needed, how it was to be or-

ganized and stored. For IU-Advise, we use Entity-Relationship model for organizing and

storing data. The process model was used to convey the structure of an application, how its

components operate and interact with each other. It also shows how data flows among pro-

cesses to get the final result. In addition to these conceptual models, the designing process

was used to develop a layout for the user interface model which represents the interaction

of users with the system. The designs of these models and the information privacy policy

for sharing advisor remarks among advisors will be the topics for the remainder of this

chapter.

3.1. Privacy Policy

Privacy is always the an important concern of users. Sharing advisor remarks among

advisors help advisors understand the personal ne eds of a student. However, information

sharing without proper controls could lead to the violation of privacy policies, regulations

or laws. Therefore, it is important to have a mechanism for restricting access to advisor

remarks as well as promoting information sharing. In order to maintain the privacy of

students and advisors, the IU-Advise system provides three privacy levels which can be

applied to advisor remarks. These levels are Advisor, Advisor Group and Public.

• Advisor level: advisor remarks belonging to this type can only be viewed and

manipulated by its owner or the creator. The user can delete and edit his or her

own private remark;

• Advisor Group level: advisor remarks in this group can be viewed and shared

among advisors but not students. Only the owner or creator of an advisor remark

7

3. PROJECT DESIGN 8

can deactivate or activate it. When an advisor remark is deactivated, it is not

deleted. It is just invisible to other advisors;

• Public level: these remarks can be viewed by both students and advisors using the

system. Similar to Advisor Group type advisor remarks, these remarks can only

be activated and deactivated by the owner or creator of the adviso remark;

These levels ensure that advisor remarks are only disclosed in a way that do not violate

user’s privacy or create unexpected difficulties for either students or advisors.

3.2. Data Model

Figure 3.1 shows the conceptual data model for the IU-Advise project [15]. We use an

Entity-Relationship Diagram (ERD) for modeling the entities (or objects) and relationships

among these entities in the application’s domain. In the ERD notation, a rectangle sym-

bolizes a data source or data table in the physical implementation. A diamond symbolizes

a relationship between two entities. A diamond wrapped by a rectangle indicates that a

relationship has its own identification information and is promoted to a data table in the

implementing phase. The Entity-Relationship Diagram provides the layout for implemen-

tation of the database.

3. PROJECT DESIGN 9

Figure 3.1. ER Diagram of IU Advisee

3. PROJECT DESIGN 10

3.3. Database Design

This section lists all the tables in the database implementation. As mentioned in the

previous section, these tables present essential entities and relationships among them in

the IU-Advise system as shown in Figure 3.1. In the section belows, each table is defined

with its location and relationships with other tables highlighted in the Entity-Relationship

Diagram.

campus

Given that Indiana University has
multiple campuses, the campus table
allows our system to maintain
information about each campus and it
further allows us to extract specific
information maintained in the system
such as student, faculty, degree
requirements, etc by specifying the
proper campus.

Column name Data type Length Description

CampusID varchar 10 Primary key-Unique identification string of a campus

Name varchar 50 Full name of a campus

Address1 varchar 50 Building number, street name

Address2 varchar 50

City varchar 25

State char 2

Zip varchar 50 Usually 5 digits

Phone varchar 12

URL varchar 255 Web page of a campus

DefaultRetentionTemplateID varchar 10

Table 3.1. SQL table structure for campus

3. PROJECT DESIGN 11

campus_reqs

The campus_reqs table contains
information about the requirements
that a student has to satisfy before
officially being admitted to a campus.

Column name Data type Length Description

CampusID varchar 10 Primary key-Unique identification string of the campus ask for the
requirements

CampusReqID int Primary key-Unique identification string of a requirement

StartAcademicTerm varchar 4 Primary key-Year and semester in which the requirement is applied

OrderOfAppearance tinyint

RequirementText varchar 250 Content of the requirement

MiscNotes varchar 250 More information or instruction about the requirement

Table 3.2. SQL table structure for campus_reqs

3. PROJECT DESIGN 12

admin_role

The admin_role table contains
information about the administrators
and their administrative access to one
or more departments. In addition, this
table allows our system to enforce a
time period during which access is
granted.

Column name Data type Length Description

LoginID varchar 8 Primary key-Username of the admin person

DeptID varchar 10 Primary key-Unique identification string of the department administered
by the admin person

CollegeID varchar 10 Primary key-Unique identification string of the college to which the
department belongs

CampusID varchar 10 Primary key-Unique identification string of the campus to which the
department belongs

StartDate date Begin date

EndDate date Expired date

Table 3.3. SQL table structure for admin_role

3. PROJECT DESIGN 13

admin_personnel

The admin_personnel provides the
credentials of an administrator.

Column name Data type Length Description

LoginID varchar 8 Primary key-Username of admin personnel

Password varchar 50 Secret word used for logging in

LastName varchar 50 Family name

FirstName varchar 50

StartDate date Begin date

EndDate date Expired date

AccessLevel varchar 50 Default value: USER

SiteStyle varchar 50 Page format applied for user-Default value: iusb.css

Table 3.4. SQL table structure for admin_personnel

3. PROJECT DESIGN 14

college

Similar to the campus table, the college
table allows our system to maintain
information about each college (or
school) and it further allows us to
extract specific information maintained
in the system such as student, faculty,
degree requirements, etc by specifying
the proper college.

Column name Data type Length Description

CollegeID varchar 10 Primary key-Unique identification string of a college

CampusID varchar 10 Primary key-Unique identification string of the campus to which the
college belongs

Name varchar 50 Name of the college

Address1 varchar 50 Building number, street name

Address2 varchar 50

City varchar 50

State char 2

Zip varchar 50 Usually 5 digits

Phone varchar 12

URL varchar 255 Web page of a college

Table 3.5. SQL table structure for college

3. PROJECT DESIGN 15

college_reqs

The college_reqs table lists all the
requirements of a specific college. It
also provides the beginning academic
term in which a requirement is applied.

Column name Data type Length Description

CampusID varchar 10 Primary key-Unique identification string of the campus to which the
college belongs

CollegeID varchar 10 Primary key-Unique identification string of the college that ask for the
requirement

CollegeReqID int Primary key-Unique identification string of the college requirement

StartAcademicTerm varchar 4 Primary key-Year and semester in which the requirement is applied

OrderOfAppearance tinyint

RequirementText varchar 250 Content of the requirement

MiscNotes varchar 250 Information or instruction about the requirement

Table 3.6. SQL table structure for college_reqs

3. PROJECT DESIGN 16

course_relationship

This data table contains the descriptive
text for a specific relationship between
two courses.

Column name Data type Length Description

RelationshipID varchar 10 Primary key-Unique identification string of a relationship

Description varchar 50 Descriptive information about the relationship

Table 3.7. SQL table structure for course_relationship

pre_co_req

The pre_co_req table contains
information about the prerequisites,
equivalents and co-requisites of a
particular course.

Column name Data type Length Description

CourseID varchar 6 Primary key-Unique identification string of a course

PreCoReqCourseID varchar 6 Primary key-Unique identification string of a course

Relationship varchar 10 Unique identification string of the relationship-Default value: PREREQ

Table 3.8. SQL table structure for pre_co_req

3. PROJECT DESIGN 17

degree_type

This data table contains the meaningful
description of a particular degree
program ID.

Column name Data type Length Description

DegreeTypeID varchar 10 Primary key-Unique identification string of the degree type

DegreeTypeDescription varchar 250 Information or instruction about the degree type

Table 3.9. SQL table structure for degree_type

3. PROJECT DESIGN 18

department

Similar to the campus and college
table, the department table allows our
system to maintain information about
each department and it further allows
us to extract specific information
maintained in the system such as
student, faculty, degree requirements,
etc by specifying the proper
department.

Column name Data type Length Description

DeptID varchar 10 Primary key-Unique identification string of the department

CollegeID varchar 10 Primary key-Unique identification string of the college to which the
department belongs

CampusID varchar 10 Primary key-Unique identification string of the campus to which the
department belongs

Name varchar 50 Full name of the department

Address1 varchar 50 Building number, street name

Address2 varchar 50

City varchar 50

State char 2

Zip varchar 50 Usually 5 digits

Phone varchar 12

URL varchar 255 Web page of the department

DefaultRetentionTemplateID varchar 10

Table 3.10. SQL table structure for department

3. PROJECT DESIGN 19

communication_type

This table lists all the methods for
contacting an advisee.

Column name Data type Length Description

CommTypeID varchar 7 Primary key-Unique identification string of communication type

CommTypeName varchar 50 Name of communication type

CommTypeDescription varchar 255 Description of communication type

DateCreated datetime Date and time of the record creation

UserCreated varchar 50 Who created the record

Table 3.11. SQL table structure for communication_type

access_level

The access_level table models the
privacy hierarchy for advisor remarks
of IU-Advise system. It provides detail
description about the scope of each
level.

Column name Data type Length Description

LevelID varchar 6 Primary key-ID string for an access level

LevelDescription varchar 255 Detail information about the level

CreationUser varchar 10 Who created the record

CreationDate datetime Date of the creation

Table 3.12. SQL table structure for access_level

3. PROJECT DESIGN 20

course

This table lists all courses offered by a
university. It also allows an
administrator to specify the maximum
and minimum number of credit hours
of a course that can be counted toward
a degree program’s course work.

Column name Data type Length Description

CourseID varchar 6 Primary key-Unique identification string of a course

CourseNo varchar 10 Course number

SubjectArea varchar 8 The subject to which the course belongs (CSCI, etc)

CourseTitle varchar 50 Full name of the course

DeptID varchar 10 Unique identification string of the department which offers the course

CollegeID varchar 10 Unique identification string of the college to which the department belongs

CampusID varchar 10 Unique identification string of the campus to which the department belongs

MinCredits float Minimum of number of credit hours that a course can be counted toward a
degree-Default value: 1

MaxCredits float Maximum of number of credit hours that a course can be counted toward a
degree-Default value: 6

Table 3.13. SQL table structure for course

3. PROJECT DESIGN 21

academic_program

The academic_program table provides
information about a degree program. It
supplies the department ID to which
the degree program belongs to and the
beginning academic term that the
degree is offered. The course work and
GPA requirements are also specified
here.

Column name Data type Length Description

DegreeID varchar 50 Primary key-Unique identification string of a degree program

CampusID varchar 10 Primary key-Unique identification string of the campus to which the
college belongs

CollegeID varchar 10 Primary key-Unique identification string of the college to which the
department belongs

DeptID varchar 10 Primary key-Unique identification string of the department which offers
the degree program

StartAcademicTerm varchar 4 Primary key-Year, semester that the degree program is offered

DegreeDescription varchar 250 Descriptive information for a degree program

DegreeTypeID varchar 10 Unique identification number for a degree type

Credits_Required tinyint Number of credit hours is required for a degree

MinGPARequired float The minimum GPA required for a degree program.

Table 3.14. SQL table structure for academic_program

3. PROJECT DESIGN 22

advisor

This table table contains contact
information of an advisor.

Column name Data type Length Description

AdvisorID varchar 8 Primary key-Unique identification string of an advisor

CampusID varchar 10 Primary key-Unique identification string of the campus to which the
advisor belongs

CollegeID varchar 10 Primary key-Unique identification string of the college to which the advisor
belongs

DeptID varchar 10 Primary key-Unique identification string of the department to which the
advisor belongs

LastName varchar 50 Family name

FirstName varchar 50

Email varchar 50 Primary email (usually IU South Bend email)

Password varchar 50 Secret word of an advisor in order to login

Table 3.15. SQL table structure for advisor

3. PROJECT DESIGN 23

advise

The advise table maintains information
about advisors and their advisees. A
given advisor may be paired to more
than one advisee. Similarly, a given
advisee may have more than one
advisor.

Column name Data type Length Description

StudentID varchar 15 Primary key-Unique identification string of a student

AdvisorID varchar 8 Primary key-Unique identification string of the advisor who advises the
student who advises the student

DeptID varchar 10 Primary key-Unique identification string of the department to which the
advisor belongs

AcademicTerm varchar 4 Primary key-Academic term in which the advisor is assigned to a student

CollegeID varchar 10 Unique identification string of the college to which the advisor belongs

CampusID varchar 10 Unique identification string of the campus to which the advisor belongs

Table 3.16. SQL table structure for advise

3. PROJECT DESIGN 24

advisor_remark

The advisor_remark table contains all
the remarks that an advisor may make
about their advisees. After each
advising session, the advisor’s remarks,
the privacy level, and the status of the
remark are saved to this table.

Column name Data type Length Description

AdvisorID varchar 8 Primary key-Unique identification string of each advisor

DeptID varchar 10 Primary key-Unique identification of the department to which the advisor
belongs

CollegeID varchar 10 Primary key-Unique identification of the college to which the advisor
belongs

CampusID varchar 10 Primary key-Unique identification string of the campus to which the
advisor belongs

StudentID varchar 15 Primary key-Unique identification string for a student

AdvisingDate datetime Primary key-Date of advising session-Default value: 0000-00-00 00:00:00

AdvisorRemark text 65535 Content of the notes

CommunicationType varchar 7 The way a student uses to contact an advisor-Default value: comm03

Active int Is a public remark is active-Default value: 1

Level varchar 6 Authorization level of an advisor remark

Table 3.17. SQL table structure for advisor_remark

3. PROJECT DESIGN 25

enrollment

The enrollment table captures all the
courses that a student has taken. It also
maintains the method by which the
student was able to complete the course
(passing grade, test-out, etc.)

Column name Data type Length Description

StudentID varchar 15 Primary key-Unique identification string of the student

CourseID varchar 10 Primary key-Unique identification string of the course

AcademicTerm varchar 4 Primary key-Year and semester the student take/took/will take the course

Grade varchar 4 Final grade -Default value: TBD

CompletionMethodID varchar 25 How the student complete the course

Explanation varchar 250 More information about the enrollment

Table 3.18. SQL table structure for enrollment

3. PROJECT DESIGN 26

satisfied_by

This table presents the relationship
between a detailed degree requirements
and courses. It shows a list of courses
that can be used for satisfying a
particular detailed requirement.

Column name Data type Length Description

DetailedRequirementID int Primary key

CourseID varchar 6 Primary key

MinGradeRequired varchar 10 Default value: NA

OtherRequirements varchar 250

Notes varchar 250

Table 3.19. SQL table structure for satisfied_by

3. PROJECT DESIGN 27

detailed_requirement

The detailed_requirement lists all the
requirements of a degree requirement
category. User can specify the
minimum and maximum number of
credit hours, notes and the descriptive
text for each detailed requirement.

Column name Data type Length Description

DetailedRequirementID int Primary key-Unique identification string of the detailed requirement

RequirementID int Unique identification string of the requirement to which the detailed
requirement belongs

OrderOfAppearance tinyint

DetailedRequirementText varchar 50 Content of the detailed requirement

MinCreditsRequired tinyint Minimum of number of credit hours required

MaxCreditsRequired tinyint Maximum of number of credit hours that student can take

MiscNotes varchar 250 Information or instruction about the detailed requirement

Table 3.20. SQL table structure for detailed_requirement

3. PROJECT DESIGN 28

requirements

The requirements table lists all the
degree requirements for a particular
academic program. It also provides the
starting semester when the requirement
must be enforced as well as total
number of credits needed to complete
the degree.

Column name Data type Length Description

RequirementID int Primary key-Unique identification string of the requirement

OrderOfAppearance tinyint

CategoryID varchar 25 Unique identification string of the category to which the requirement
belongs

RequirementText varchar 50 Description about the requirment

MinCreditsRequired tinyint Minimum of number of credit hours required by the requirement

MaxCreditsRequired tinyint Maximum of number of credit hours required by the requirement

MiscNotes varchar 250 Information or instruction about the requirement

CampusID varchar 10 Unique identification string of the campus to which the department belongs

CollegeID varchar 10 Unique identification string of the college to which the department belongs

DeptID varchar 10 Unique identification string of the department which offers the degree
program

DegreeID varchar 50 Unique identification string of the degree program to which the requirement
belongs

StartAcademicTerm varchar 4 Year and semester of beginning of applying

Table 3.21. SQL table structure for requirements

3. PROJECT DESIGN 29

degree_req_categories

The degree_req_categories shows the
broad requirement categories for a
particular degree. Such categories may
include General Education, Language,
Math, Science, etc.

Column name Data type Length Description

CategoryID varchar 25 Primary key-Unique identification string of the category

CategoryText varchar 250 Content of the category

OrderOfAppearance tinyint

MiscNotes varchar 250 Information or instruction about the category

Table 3.22. SQL table structure for degree_req_categories

3. PROJECT DESIGN 30

declared_program

This declared_program table captures
the information about a student’s
declared major or majors. This
information is necessary to ensure the
proper degree requirements are
selected and applied to this student.

Column name Data type Length Description

StudentID varchar 15 Primary key-Unique identification string of a student

DegreeID varchar 50 Primary key-Unique identification string of the degree program that the
student wants to pursue

CampusID varchar 10 Primary key-Unique identification string of the campus to which the
department belongs

CollegeID varchar 10 Primary key-Unique identification string of the college to which the
department belongs

DeptID varchar 10 Primary key-Unique identification string of the department that offers the
degree program

DeclaredAcademicTerm varchar 4 Year and semester of beginning of offering

Table 3.23. SQL table structure for declared_program

3. PROJECT DESIGN 31

student

The student table captures
demographic information about a
student. It also maintains the student’s
picture and admission status.

Column name Data type Length Description

StudentID varchar 15 Primary key-Unique identification string of a student

NetworkID varchar 10 IU username of the student

Password varchar 50 Secret word used for logging in

LastName varchar 50 Family name

FirstName varchar 50

Email varchar 50 Primary email (IU South Bend email)

AlternateEmail varchar 50 Secondary email address (beside IU email address)

Address1 varchar 50 Building/house number, street name

Address2 varchar 50 Apartment number

City varchar 25

State char 2

Zip varchar 50 Usually 5 digits

Phone varchar 12 Primary phone number (usually home phone)

MobilePhone varchar 12 Cellular phone number

DeptID varchar 10 Unique identification string of the department to which the student is
admitted to (it may differ from the department of declared program)

CollegeID varchar 10 Unique identification string of the college to which the department belongs

CampusID varchar 10 Unique identification string of the campus to which the department belongs

DegreeID varchar 50 Unique identification of the degree program to which the student is
admitted

TermAdmitted varchar 4 The year and semester of admission

BirthYear int Year of birth of student

AdmissionStatus enum 4 Admission condition of student: AFQL - admitted fully qualified, APRS-
admitted probation-enum(’AFQL’,’APRS’)

ImageUrl longtext 2147483647 Link to student picture

Table 3.24. SQL table structure for student

3. PROJECT DESIGN 32

completion_method

This table provides description for the
method by which a course is
completed.

Column name Data type Length Description

CompletionMethodID varchar 25 Primary key-Unique identification string of the completion method

Description varchar 250 Descriptive information of the completion method

Table 3.25. SQL table structure for completion_method

semester

The semester table supplies detail
information of an academic term which
includes the academic semester and
year.

Column name Data type Length Description

AcademicTerm varchar 4 Primary key

Year int

Semester varchar 10

BeginOfSemesterDate date Default value: 0000-00-00

EndOfSemesterDate date Default value: 0000-00-00

CurrentTerm tinyint

Table 3.26. SQL table structure for semester

3. PROJECT DESIGN 33

actionlog

This table maintains a log of all login
attempts to the IU-Advise system. The
information in this table is used to limit
the number of login attempts a user can
make.

Column name Data type Length Description

ActionID bigint Primary key-ID for an action

ActionDescription varchar 255 What user does

LoggedDateTime datetime When the action happens

LoggedUser varchar 50 Who invokes the action

Result varchar 20 Result of the action

Table 3.27. SQL table structure for actionlog

3. PROJECT DESIGN 34

3.4. Process Model

3.4.1. Functional Decomposition Diagram

Figure 3.2 shows the functionalities supported by the IU-Advise system [15]. The

system is divided into three subsystems: Student services, Advisor services, and Admin-

istrative services. The scope of this thesis is limited to the functionalities provided under

advisor and student services.

Before providing accesses to functionalities, a user must be authenticated and granted

a valid role and privileges. Once the user is authenticated and authorized as a student, he

or she has access to degree audit, unofficial transcript, and current enrollment information

reports. The user can use the “what-if” report feature to determine how his or her current

courses fit with other degree requirements. An authenticated advisor has similar access,

however, advisors have additional capability to create and store advisor remarks.

In the following sections, we will look into how these functionalities are decomposed

and implemented by developing a series of data flow diagrams (DFD).

3.PR
O

JE
C

T
D

E
SIG

N
35

Figure 3.2. Functional Decomposition Diagram

3. PROJECT DESIGN 36

3.4.2. Data Flow Diagrams

To model the functionalities of the system, we use data flow diagrams (DFD). In a data

flow diagram, a rectangle represents an external agent (such a user) that interacts with sys-

tem. The parallel lines represent the data stores (such as data tables in the database) from

which a process retrieves and stores information. An oval represents a process (such as

a code module). There are two types of diagrams: context and detailed DFD. A context

diagram represents the entire system as one single abstract process. It also shows the inter-

action of the system with external agents, other processes and data stores. A detailed DFD

decomposes the abstract process in the context level into subprocesses. At this level, the

DFD diagram shows how subprocesses interrelate to each others and how data is modified

while flowing through the internal processes. All the data stores in the detailed DFD are

matched with those in the context DFD.

Figure 3.3 shows the overall context level data flow diagram of the IU-Advise system.

Students, faculty and staff are the main constituents of the IU-Advise system. Figure 3.3

also shows which data tables are used for data processing. Once the overall interaction of

the system with its environment is identified, we can decompose and discuss its constituent

parts. In the following section (from page 37-58 and Figure 3.4 to Figure 3.25) we will

systematically decompose, display and describe each subsystem using a context level and

detailed level data flow diagram.

3. PROJECT DESIGN 37

Figure 3.3. Context Data Flow Diagram of IU-Advise system

3. PROJECT DESIGN 38

3.4.2.1. Student Functionality

An authenticated student can view his or her degree audit. Figure 3.4 shows data tables,

the expected result and the input for producing a degree audit. The details for retrieving

data and producing degree audit for a student are shown in Figure 3.5.

Figure 3.4. Student - View Degree Audit Context DFD

3.PR
O

JE
C

T
D

E
SIG

N
39

Figure 3.5. Student - View Degree Audit Detailed DFD

3. PROJECT DESIGN 40

In addition to degree audit, another useful report is the unofficial transcript. Similar to

degree audit, the context and the detailed DFDs are shown in Figures 3.6 and 3.7.

Figure 3.6. Student - View Unofficial Transcript Context DFD

3. PROJECT DESIGN 41

Figure 3.7. Student - View Unofficial Transcript Detailed DFD

3. PROJECT DESIGN 42

Figures 3.8 and 3.9 shows what data are needed and how they are used for generating

the grade report of a specific student. A student needs to provide the specific academic year

and semester to produce an appropriate report.

Figure 3.8. Student - View Grades Context DFD

3. PROJECT DESIGN 43

Figure 3.9. Student - View Grades Detailed DFD

3. PROJECT DESIGN 44

A student can also review advisor remarks in public level from his or her advisors.

Figure 3.10 and 3.11 show how the system produces this list.

Figure 3.10. Student - View Advisor Remarks Context DFD

3. PROJECT DESIGN 45

Figure 3.11. Student - View Advisor Remarks Detailed DFD

3. PROJECT DESIGN 46

3.4.2.2. Advisor Functionality

Figure 3.12 and 3.13 present how an advisor views advisor remarks. An advisor can

view all advisor remarks in public and advisor group level. Advisor remarks in advisor

level can only be viewed by their owner.

Figure 3.12. Advisor - View Advisor Remarks Context DFD

3. PROJECT DESIGN 47

Figure 3.13. Advisor - View Advisor Remarks Detailed DFD

3. PROJECT DESIGN 48

The “View Degree Audit” function for advisors described in Figure 3.14 and 3.15 is

essentially the same as “View Degree Audit” described under student functionalities.

Figure 3.14. Advisor - View Degree Audit Context DFD

3. PROJECT DESIGN 49

Figure 3.15. Advisor - View Degree Audit Detailed DFD

3. PROJECT DESIGN 50

An advisor can view the “Unofficial Transcript” of a specified student. The process in

Figure 3.16 and 3.17 makes use the same procedure described under student’s functionali-

ties.

3. PROJECT DESIGN 51

Figure 3.16. Advisor - View Unofficial Transcript Context DFD

3. PROJECT DESIGN 52

Figure 3.17. Advisor - View Unofficial Transcript Detailed DFD

3. PROJECT DESIGN 53

Figure 3.18 and 3.19 display the view grade report generating steps for an advisor’s

request.

Figure 3.18. Advisor - View Grades Context DFD

3. PROJECT DESIGN 54

Figure 3.19. Advisor - View Grades Detailed DFD

3. PROJECT DESIGN 55

An advisor can create advisor remarks in all three levels (Figure 3.20 and 3.21).

Figure 3.20. Advisor - Create Advisor Remark Context DFD

3. PROJECT DESIGN 56

Figure 3.21. Advisor - Create Advisor Remark Detailed DFD

3. PROJECT DESIGN 57

An advisor can only edit the content, change the access level or communication type of

a remark, if he or she is its owner (Figure 3.22 and 3.23). The advisor can only make such

modifications to non-public remarks.

3. PROJECT DESIGN 58

Figure 3.22. Advisor - Modify Advisor Remark Context DFD

3. PROJECT DESIGN 59

Figure 3.23. Advisor - Modify Advisor Remark Detailed DFD

3. PROJECT DESIGN 60

The system only allows an advisor to remove his or her own advisor remarks in advisor

level (Figure 3.24 and 3.25).

Figure 3.24. Advisor - Remove Advisor Remark Context DFD

3. PROJECT DESIGN 61

Figure 3.25. Advisor - Remove Advisor Remark Detailed DFD

3. PROJECT DESIGN 62

3.5. User Interface

3.5.1. Home Page

Upon visiting the advising website, all users will be presented the following web page

(Figure 3.26) and must explicitly choose a role (advisor or student) in order to proceed

to login page. In the following sections, we will first describe the advisor functionalities

(section 3.5.2) and later the student functionalities (section 3.5.3).

Figure 3.26. Chosen role screen for IU-Advise

3.5.2. Advisor Functionality

By clicking on ‘Advisor Login’ link, the advisor is presented with the login page (Figure

3.27). Upon validation, the user will be directed to Advisor page (Figure 3.30). To increase

the security of the website, when the provided credentials are not correct, users are allowed

only two more tries before having to wait 1 minute for new login attempts (Figure 3.28).

This login page also provides input validation such as invalid characters of if any required

field is left empty. If the characters are invalid, a message is displayed (Figure 3.29).

3. PROJECT DESIGN 63

Figure 3.27. Login form for an advisor

Figure 3.28. Server validation message

Figure 3.29. Client validation message

3. PROJECT DESIGN 64

3.5.2.1. Advisor Page

After the user is authenticated, the system displays the advisor screen (Figure 3.30).

The system displays the left navigation menu specifically designed for an advisor role user.

On the right panel, there are two tabs which allow an advisor to view advisee list with

students’ pictures (Figure 3.30) and review his or her own personal information (Figure

3.31).

Figure 3.30. Advisor index page

Figure 3.31. Advisor information tab

3. PROJECT DESIGN 65

3.5.2.2. Student Profile Page

Once a particular student is selected, the student profile page displays student related

information in three tabs. The first tab displays a student’s demographic information (Fig-

ure 3.32). The second tab gives the latest admission information (Figure 3.33). The third

tab lists the test out or placement exams’ result (Figure 3.34). To activate a tab, an advisor

can click on the title to show the corresponding information. The advisor can also choose

a different advisee from the combo box on the top of the tab panels. The data for the new

student will be loaded automatically. The advisee combo box automatically becomes a list

box if an advisor has more than 8 advisees.

Figure 3.32. Student demographic information tab

3. PROJECT DESIGN 66

Figure 3.33. Latest admission information tab

Figure 3.34. Test out information tab

3. PROJECT DESIGN 67

3.5.2.3. Advisor Remark Page

After a typical advising session, an advisor may record some remarks about the discus-

sion. This can be done by clicking on the ‘Advisor Remark’ link. The system then presents

the default page for the advisor, from which the advisee can select an advisee and click

view advisor remarks. Once the advisee is selected, in the first tab, an advisor can view

advisor remarks in public and advisor group level made by other advisors about the current

student (Figure 3.35). The second tab (Figure 3.36) allows advisors to:

• Create an advisor remark;

• Delete, update and edit an advisor remark in advisor level;

• Deactivate or activate an advisor remark in public and advisor group level;

Figure 3.35. Advisor remark list

To add a new advisor remark, an advisor click on the ‘Add’ button to display the New

Advisor Remark form (Figure 3.37). The advisor then chooses student name, communi-

cation type (Email, Walk-in, or Telephone), access level of the advisor remark (public,

advisor group or advisor) and provides the content of the remark. If the advisor leaves the

content empty, a message box will appear to alert. In case the advisor choose to create new

3. PROJECT DESIGN 68

Figure 3.36. Personal advisor remark list

public or advisor group remark, he or she can check the ‘Make visible’ check box to make

the remark visible to other users. After providing information, the advisor clicks the ‘Save’

button to submit the new advisor remark.

Figure 3.37. Add new advisor remark form

To edit an advisor remark, an advisor first has to select the “remark” which to be mod-

ified by checking the check box in front of that remark (Figure 3.38). Then, the advisor

3. PROJECT DESIGN 69

clicks the ‘Edit’ button to load the chosen record. If the record is not valid for editing, the

advisor is directed back to the ‘Advisor Remark’ page. If it is valid, data is loaded into a

form (Figure 3.39). At this point, the advisor can edit the contents of the remark, choose

different communication type, or change the access level of the remark. If the access level

is changed from advisor level to public or advisor group level, the system will alert the

advisor to confirm the change of access level. This is critical since public or advisor group

level advisor remarks cannot be edited or deleted, they can only be activated or deactivated.

After clicking the ‘OK’ button, the advisor is shown modifications and asked to confirm

the operation.

Figure 3.38. Choose a user advisor remark

To delete an advisor remark, the advisor first select advisor remarks need to be deleted

(Figure 3.40). If there are invalid records for deletion (e.g improper ownership), the system

will automatically filter out and only show valid records for confirmation (Figure 3.41).

There will be a message to inform the advisor if there is no record to be deleted. Otherwise,

the advisor clicks the ‘OK’ to confirm the deletion.

3. PROJECT DESIGN 70

Figure 3.39. Load data into form

Figure 3.40. Choose multiple user advisor remark

With public and advisor group level remarks, advisors can only either activate or de-

activate them. To activate or deactivate advisor remarks, the advisor chooses the remarks

(Figure 3.42) then either click ‘Activate’ or ‘Deactivate’ button.

3. PROJECT DESIGN 71

Figure 3.41. Only list valid records

Figure 3.42. Chosen records for activating or deactivating

3.5.2.4. Degree Audit

To prepare for each advising session and help a student plan his or her upcoming sched-

ule, an advisor often needs to view the degree audit for a givent student. The degree audit

provides a convenient method for identifying which degree requirements are which re-

quirements are still unmet, helping focus the discussion between the student and his or her

advisor. This report can be accessed by clicking on the ‘Degree Audit’ link. The advisor

then chooses an advisee from the advisee list and click ‘View degree audit’ button. The

3. PROJECT DESIGN 72

degree audit for the chosen student is displayed as in Figure 3.43. A degree audit report

contains two tabs. The first tab is the summary information. The second tab is the detail

information which lists the degree requirements, detailed requirements and courses that

satisfy the detailed requirements (Figure 3.44). A green line in detail part of the degree

audit indicates a student has successfully completed the given detailed requirement. On the

contrary, a red line indicates that a student has attempted to complete the detailed require-

ment, but has not yet satisfied it. In addition to pass and fail indicator, if no attempt is made

to satisfy a given detailed requirement, the degre audit feature presents a list of courses that

can potentially satisfy that detailed requirement.

Figure 3.43. Degree audit result

Figure 3.44. Degree audit detail tab

3. PROJECT DESIGN 73

3.5.2.5. Degree What-if Report

Many students would like to know how their existing courses apply to the degree re-

quirements for another major. The “What-If” report is designed to answer such questions.

To generate a what-if report, an advisor clicks on ‘Degree What If’ link. Then, the advisor

selects the advisee (from the first combo box) and the new degree program (from the sec-

ond combo box) before clicking on the ‘View What If Report’ button (Figure 3.45). Figure

3.46 shows the details of a What-If report. The What-If report also supports matching the

equivalent courses to satisfy for a detail requirement. Along with the detail report, the

system also produces a list of “elective” courses which do not fit in any particular ddegree

requirements7 (Figure 3.47).

Figure 3.45. Input for producing degree what-if report

3. PROJECT DESIGN 74

Figure 3.46. Degree what-if report details

Figure 3.47. Excluded courses report

3. PROJECT DESIGN 75

3.5.2.6. View Grade

The ‘View Grade’ link allows advisors to view the semester grade of a given advisee.

To do so, an advisor clicks the ‘View Grade’ link, select an advisee from the list, then select

the academic term (semester and year), and the grade report will be produced (Figure 3.48).

The result report is displayed below the academic term combo box.

Figure 3.48. Advisor view grades

3.5.2.7. View Unofficial Transcript

To display a chronological view of the student’s grades an advisor can consult the un-

official transcript. To show the report, an advisor clicks on the ‘Unofficial Transcript’ link,

selects an advisee and clicks ‘View unofficial transcript’ button to display the report as in

Figure 3.49.

3.5.3. Student Functionality

When a user clicks on ‘Student Login’ link, a login form similar to the one shown to

advisors will appear. The authentication process is similar, however, this form uses the

3. PROJECT DESIGN 76

Figure 3.49. Unofficial transcript detail

student data table for authenticating the user. As an authenticated and authorized student

can access the welcome screen with the left navigation menu specifically designed for

students (Figure 3.50). The right panel of the screen displays the demographic information,

latest admission information and test out or placement results in three tabs.

Figure 3.50. Student index page

In addition to viewing profile, the student can also access other reports by clicking on

the corresponding links on the left navigation menu of the welcome screen. The produced

reports have similar style and layout with those for advisors. By Clicking on ‘Advisor

3. PROJECT DESIGN 77

Remark’ link, a student can view all public level advisor remarks in a table (Figure 3.51).

This table can be sorted by clicking on the column headers.

Figure 3.51. Student advisor remark list

Clicking on the ‘Degree Audit’ link and choosing a degree program, the student dis-

plays the degree audit summary as in Figure 3.52 and the details in Figure 3.53.

Figure 3.52. Student degree audit

The degree what-if report is activated by the ‘Degree What If’ link. Then, the student

chooses a target degree program and clicks ‘View what if report’ to show the result page

(Figure 3.54).

3. PROJECT DESIGN 78

Figure 3.53. Student degree audit details

Figure 3.54. Student degree what-if report

Similar to an authenticated advisor, an authenticated student can also view his or her

grades from a specific academic term by clicking on the ‘View Grade’ link, choosing the

desired semester and year and clicking on the ‘View grades’ button. The resulting page is

displays as in Figure 3.55.

3. PROJECT DESIGN 79

Figure 3.55. Student view grade report

A student can review his or her own academic progress by clicking on the ‘Unofficial

Transcript’ link. A report is produced and shown as in Figure 3.56.

Figure 3.56. Student view unofficial transcript

4. Implementation Technologies

4.1. Application Architecture

The project is implemented by using a three tier software model which includes a user

interface, a business logic and a database layer. A common web browser such as Firefox

or Internet Explorer can be used as user interface. These web browsers support most of

the new specifications of HTML and CSS to layout and present input forms as well as

output result. In this project, Internet Explorer and Firefox is mainly used for testing pur-

poses. The business layer is responsible for validating user input, as well as processing and

interaction with the database and maintaining security and privacy of data. This layer is

implemented using a combination of Apache, Zend Framework, and PHP. Apache is a free

and open source web server. It is widely used and easy to install on both the Windows and

Linux platforms. PHP is a C++ like open source server-side scripting language. A PHP

engine can be installed on both Apache and IIS. In addition, we also have utilized the Zend

Framework for interfacing the business logic layer with the user interface layer. More-

over, Zend Framework has a built-in templating engine and useful abstract classes suited

for developing a web application. Finally, the database layer is implemented using MySQL

Server Community version. MySQL Server is a popular open source database engine that

supports most features of commercial database engines such as Microsoft SQL Server. The

use of PHP and Zend Framework helps to completely separate the three layers of the ap-

plication and also increases the flexibility and maintainability of the project. In addition,

the prototype was developed in Microsoft Windows Vista and ported to Linux in order to

demonstrate the cross platform utility of this system. Figure 4.1 shows the architecture of

the IU-Advise system.

80

4. IMPLEMENTATION TECHNOLOGIES 81

Figure 4.1. Architecture of the proposed system

4. IMPLEMENTATION TECHNOLOGIES 82

4.2. Ajax

In addition to above tools, Ajax, which is a new web programming model, is also used

in IU-Advise to build a friendlier and dynamic user interface. This section describes our

research and use of this model within IU-Advise.

Ajax stands for Asynchronous JavaScript and XML [16]. This phrase was defined by

Jesses James Garrett in [16] and is not considered to be an acronym. Ajax is not composed

by one single technology. In fact, it includes:

• XHTML and/or CSS-for controlling appearance of a HTML page;

• Document Object Model (DOM)-for interacting and manipulating elements in a

HTML page;

• XML or JSON-for transmitting data between server and client;

• JavaScript-for developers to work with above technologies;

These technologies are available in most of modern web browsers and can be used to pro-

vide better functionality, more dynamic and rich user interface to web applications

Before presenting the ideas behind Ajax, we will examine the traditional web applica-

tion development model. In traditional model, a web browser submits a HTTP request in

form of HTTP packets to a web server. The server processes this request, produces and

sends an HTML page along with CSS and JavaScript files back to client’s web browser

(the left column of Figure 4.2). The web browser loads or reloads all the files from the

server to display a new page. This model is called synchronous because each user inter-

action always corresponds with a server processing (top portion of Figure 4.3) [16]. The

traditional model perfectly works in the point of view of developers and matches the nature

of hypertext medium. It, however, does not provide a dynamic and friendly user interaction

since the users have to wait for the new results while the server is processing and resend-

ing the information back to the browser. This model requires large network bandwidth for

transmitting data since each transmission usually includes unnecessary duplicated data that

4. IMPLEMENTATION TECHNOLOGIES 83

Figure 4.2. AJAX (right) and traditional model (left) [16]

has not been changed. These limitations make web applications less favorable than desktop

applications.

In contrast to the traditional web model, the Ajax model introduces an Ajax engine.

This component is written in JavaScript, loaded when the web browser starts up and typ-

ically hidden from users. A user interaction then generates a JavaScript call to this Ajax

engine (the right column of Figure 4.2). The engine then handles the request on its own

if it is simple such as checking to see if a required field is not empty. For more complex

requests that require server-side processing, it will generate a HTTP request to the server

(e.g. user interaction requires inserting new record into database.) The server will respond

4. IMPLEMENTATION TECHNOLOGIES 84

Figure 4.3. AJAX (bottom) and traditional model (top) [16]

to the request by sending a message in XML or JSON format. The browser then decodes

data via the Ajax engine which updates components in the user interface. Since each user

interaction does not need to be matched by a server processing (bottom portion of Figure

4.3) to update the user interface, this model is call asynchronous [16]. By using Ajax, users

4. IMPLEMENTATION TECHNOLOGIES 85

do not have to wait for HTTP packets to be sent to the server, and for the result to come

back in order to indicate that user input misses required fields or has included an invalid

character. This feature makes web applications responsive and friendlier to users by the

instant response from the Ajax engine. Ajax model also offers effective bandwidth usage

since only needed data is transmitted between client and server. This flexibility enables

developers to create richer web applications that can compete with desktop applications.

Although providing foundation for richer web application, Ajax has one important dis-

advantage. Ajax requires users to enable JavaScript in their browser. However, not all

the users want to turn on this feature because of the potential risk of bad and dangerous

JavaScript execution. In addition to this, some devices such as mobile phones, PDAs, etc

may not completely support JavaScript.

Generally, the combination of mature Ajax model, cross platform operation and rich

graphical user interface make web applications a more popular choice for developers. It,

however, requires a careful attention to security issues in order to make sure that using Ajax

does not make the application or the client system becomes vulnerable.

4.3. Apache Web Server

Apache HTTP Server Project is a part of Apache Software Foundation whose objective

is to create full-feature and open source implementation of an HTTP (web) server [17].

The Apache web server was initially created by Robert McCool and started as a patch to an

old server known as NCSA HTTPd [18]. Today, the project is maintained by contributions

from programmers and developers around the world.

The latest version of Apache is 2.2. Apache is quite popular and provides configurable,

modular design, supporting multiple scripting languages (Perl, PHP, etc) and operating

cross-platform from UNIX-based to Microsoft Window servers [19]. Figure 4.4 compares

the number of servers running Apache to other web servers.

4. IMPLEMENTATION TECHNOLOGIES 86

Figure 4.4. Server Share among the Million Busiest Sites, March 2009 [20]

In the latest version, Apache provides web masters and web developers a comprehen-

sive environment and tool for managing and building web application which includes:

• Supporting new features of latest standards

– HTTP 1.1 and also backward compatible with HTTP 1.0

– Common Gateway Interface (CGI), FastCGI for non-Perl CGI

– Secure Socket Layer (SSL)

– Java Servlet

– Server Side Include (SSI)

• Simple and efficient file-based configuration: configuring and changing Apache

behavior with the primary configuration file httpd.conf. We can also tell Apache to

handle more than one domain name by using only simple text editor like Notepad.

Apache can determine virtual hosts either by IP (IP-based) or name (name-based)

monitoring.

• Supporting PHP, Perl and many other scripting language with modular design.

This allows Apache to host most open source software packages of web develop-

ment and makes it favorable to businesses for saving expenses. Modular design

makes Apache extensible to accommodate new technology.

4. IMPLEMENTATION TECHNOLOGIES 87

• Flexbile and customizable logs and server status. These feature allows web master

to easily monitor websites with their own specifications. They can quickly track

down problems to source when a failure occurs.

• Implementing message-digest-based authentication: basic HTTP authentication

for web servers.

4.4. Server-Side Scripting with PHP

4.4.1. Server-side Scripting

Server-side scripting is a web technology in which a web page is dynamically and

programmatically generated by executing a script on a web server based on requests from

users. These scripts often submit queries to one or many backend databases on server side,

assemble the results into HTML documents and send them back to clients. Security for

client and server is the main advantage of server-side scripting language. A server-side

script file is always executed by the server and generates a HTML response that is sent

back to clients. Since no code needs to be executed at the client side, the developers have

minimized the risk of illegally running dangerous codes. The client program (web browser)

cannot view the source code which produces the web page. Therefore, it cannot retrieve any

information about the underlying resources or about the server such as database structure,

application configuration, etc. It is also convenient for web browsers which only receives

and renders HTML. Browsers consequently do not need to support the different server-side

scripting languages. In conclusion, server-side scripting is an good way for delivering web

services as well as protecting web applications.

4. IMPLEMENTATION TECHNOLOGIES 88

4.4.2. PHP

PHP stands for Hypertext Preprocessor. PHP is a widely-used open source scripting

language. PHP gains its popularity by offering wide variety of features and compatibility

with many platforms [21]:

• A server-side scripting language: PHP collects form data, generates HTML web

pages, sets and retrieves cookies, and communicates with a web server. It also can

produce PDF file or stream data such as Flash video on the fly;

• A useful command line scripting: PHP is packed with useful text processing func-

tions which include regular expression processing and XML document parsing;

• A cross-platform programming language: PHP independently operates on major

platforms such as Microsoft Windows, Linux, Mac OS X, Solaris, etc. PHP is also

supported by most popular web servers. Microsoft Information Internet Services

and Apache are two well-known web servers that provide PHP support;

• Comprehensive database abstraction extensions: PHP provides object-oriented

classes that encapsulate the complexity of interacting with MySQL, Microsoft

SQL Server, Microsoft Access, Oracles, and many databases, making PHP a pop-

ular tool for application development;

• PHP can also communicates with mail services by using POP3, LDAP, IMAP,

SNMP and other protocols;

• With the use of PHP-GTK, PHP can be used to develop desktop applications;

Despite of the emergence of new server-side scripting languages such as Ruby, Groovy

and the commercial competitors such as ASP.NET, PHP is remains a popular tool for web

developers. According to Tiobe Programming Community Index of May 2009 [22], it is

the fourth popular programming language after Java, C and C++.

4. IMPLEMENTATION TECHNOLOGIES 89

4.4.3. Standard PHP Library (SPL) and Auto Loading

4.4.3.1. Standard PHP Library

The Standard PHP Library is a set of object-oriented facilities, standard data structures

for resolving standard and general problems of handling exceptions, collection iteration,

automatically loading classes and physical file accessing jobs. SPL tries to bring the ad-

vantages of object-oriented principals to increase the productivity of PHP coding. The

following list presents some important features of SPL [23]:

• Standard data structures: SplDoublyLinkedList, SplStack, SplQueue, etc

• For collection iteration: ArrayIterator, CachingIterator, DirectoryIterator, Sim-

pleXMLIterator, etc

• Exception handling: BadFunctionCallException, BadMethodCallException, Out-

OfBoundsException, OutOfRangeException, OverflowException, etc

• Auto loading: class_implements, spl_autoload, spl_autoload_register, etc

• File handling: SplFileInfo class

In the above list, the spl_autoload and spl_autoload_register are the key components that

allow an application in order to load classes on the fly to handle requests and process data.

4.4.3.2. Auto Loading

In PHP language, auto loading is an advanced mechanism for dynamically instantiat-

ing objects of classes without explicitly using include, include_once, require, require_once.

spl_autoload is called whenever a class is called in a PHP script. When a class is called for

the first time, spl_autoload loads the source code file of the class based on the include path

and the extensions registered with PHP. PHP allows developers to define and register their

own auto load function for user-defined classes by using spl_autoload_register. Besides

freeing our code from large sections of include statements, this dynamic loading allows us

to load a requested class, instantiate objects and execute their methods on demand rather

4. IMPLEMENTATION TECHNOLOGIES 90

than loading all the source files at start up. This mechanism has given use to the engine

of web applications which is developed using a dynamic design pattern. Such applications

may have many code modules which are organized in a large number of source code files.

Without dynamic loading of files, loading all of these source code files at once consumes

server resources and impacts the server performance significantly. Dynamic loading pre-

vents wasteful heavy loads on the server because not all the functions are needed in most

common scenarios.

4.5. MySQL

The IU-Advise system uses MySQL Community version 5.1.34 as the backend data-

base engine. MySQL is an open source relational database management system (RDBMS)

which is used for managing and manipulating relational databases. MySQL is owned and

financed by MySQL AB, a subsidiary of Sun Microsystems and Oracle Corp. The SQL-92

standard compatibility, high availability for wide range of operating systems on different

computer architectures and low total cost of ownership are the key features that spread

MySQL all over the software industry world. Currently, there are two types of MySQL

versions provided [24, 25]:

• Community: a free version that is intended for users or organizations that are

comfortable with installing, configuring, managing and securing databases with

standard documentations and support;

• Enterprise: is a paid version bundled with many first-class support services which

include:

– Automated notification for updates and new versions

– Technical advice for installing, configuring, etc

– Fast response time resolution for technical problems

4. IMPLEMENTATION TECHNOLOGIES 91

Both versions of MySQL provide a programming API for Java, .NET, C++, PHP, Ruby,

and Python. This capability provides flexibility to developers to select their programming

language and framework for building applications. As a RDBMS, MySQL provides de-

velopers facilities for organizing, querying and manipulating data. If referential integrity

is desired, the developers can use the INNODB engine for data tables. Views and stored

routines are offered for optimizing query performance. Constraints and triggers are in-

cluded for automating data consistency checking. In addition to offering tools to develop-

ers, MySQL also has a built-in tool to secure database objects, control and authorize data

access through Access Privilege System and User Account Management. Administrators

also are equipped with wide variety backup and recovery strategies.

4.5.1. Views

Views (prewritten queries) are composed of multiple data tables. Data columns or fields

in a view can be aliased in a more meaningful way. This feature makes the data in view

more convenient to be used by the developers. By using views, developers can perform

complex data manipulation without needing to be database or SQL experts. Starting with

MySQL version 5.0, a view under certain conditions can update, insert and delete records in

underlying data tables which define it. Views also are good tools for hiding the structure of

a database from unauthorized developers. Below is an example of a view which combines

data from enrollment, completion_method, and student into a single and convenient view

named student_testout_view.

Listing 4.1. A view definition

CREATE OR REPLACE

ALGORITHM=UNDEFINED

DEFINER=‘root‘@‘localhost‘

SQL SECURITY DEFINER VIEW ‘student_testout_view‘ AS

SELECT

‘completion_method‘.‘Description‘ AS ‘Description‘,

4. IMPLEMENTATION TECHNOLOGIES 92

‘student‘.‘StudentID‘ AS ‘StudentID‘,

‘enrollment‘.‘Explanation‘ AS ‘Explanation‘,

‘enrollment‘.‘Grade‘ AS ‘Grade‘

FROM ((‘enrollment‘ JOIN ‘completion_method‘ ON

((‘enrollment‘.‘CompletionMethodID‘ = ‘completion_method‘.‘CompletionMethodID‘)))

JOIN ‘student‘ ON

((‘enrollment‘.‘StudentID‘ = ‘student‘.‘StudentID‘)))

WHERE ((‘completion_method‘.‘CompletionMethodID‘ = ’TESTOUT’) AND

((NOT((‘enrollment‘.‘Grade‘ LIKE ’%A%’)))

OR (NOT((‘enrollment‘.‘Grade‘ LIKE ’%B%’)))

OR (NOT((‘enrollment‘.‘Grade‘ LIKE ’%C%’)))

OR (NOT((‘enrollment‘.‘Grade‘ LIKE ’%D%’)))

OR (NOT((‘enrollment‘.‘Grade‘ LIKE ’%F%’)))))

4.5.2. Stored Routines

A stored routine is a set of SQL statements that are stored in a database server to query

or manipulate database objects. MySQL categorizes stored routines into two types: stored

procedures and functions. A stored procedure has parameter list and return result either as

set of data rows or a single value. It also accepts output parameters which can be used for

returning value. A stored procedure can return a set of data rows and multiple single values

by output parameters at the same time. Similarly, a function also have parameter list but

its parameters are always input parameters. Another restriction on a function is that it can

only returns a single value.

Stored routines offer some advantages in data accessing performance and cross platform

execution. First, a stored routine is only compiled the first time it is called. No compilation

is necessary in the subsequent calls to the procedure unless its content or properties are

changed. This characteristic provides improved performance for recurring queries. Sub-

mitting a SQL statement to MySQL has lower performance because a SQL statement has

to be parsed, optimized and compiled each time it is submitted to a MySQL server. Sec-

ond, a stored routine can be invoked by using its name and passing parameters. This syntax

4. IMPLEMENTATION TECHNOLOGIES 93

usually is shorter than the content of SQL statements that actually performs the process-

ing. Therefore, bandwidth requirement is reduced. Third, as stored routines are stored in

database server and written in SQL syntax, they can be executed by different programming

languages and platforms. Platform independence makes stored routines reusable and pro-

motes consistency. Finally, stored routines can be used as security mechanism to insure

that developers can only access to authorized information. Using stored routines, however,

increases the load on server since most of the processing is done on the server. As the

result, a busy server can be flooded with multiple long runtime stored routines.

Listing 4.2 is a definition of a stored procedure. This stored procedure accepts two

VARCHAR input parameters and uses them in the WHERE clause to retrieve all the advisor

remarks of an advisor (pAdvisorID) about the given student (pStudentNetworkId).

Listing 4.2. A stored procedure definition

CREATE DEFINER=‘root‘@‘localhost‘

PROCEDURE ‘get_all_advisor_remarks_by_advisor_student_sp‘(

IN pStudentNetworkID VARCHAR(10),

IN pAdvisorId VARCHAR(8))

BEGIN

SELECT

communication_type.CommTypeName, advisor_remark.AdvisorRemark,

advisor_remark.AdvisingDate, campus.Name AS CampusName,

college.Name AS CollegeName, department.Name AS DeptName,

advisor.LastName AS AdvisorLastName, advisor.FirstName AS AdvisorFirstName,

advisor_remark.Active, advisor_remark.Level,

advisor_remark.StudentID, advisor_remark.AdvisorID,

advisor_remark.CollegeID, advisor_remark.CampusID,

advisor_remark.DeptID

FROM

communication_type

INNER JOIN advisor_remark ON

(communication_type.CommTypeID = advisor_remark.CommunicationType)

INNER JOIN student ON (advisor_remark.StudentID = student.StudentID)

4. IMPLEMENTATION TECHNOLOGIES 94

INNER JOIN advisor ON (advisor_remark.AdvisorID = advisor.AdvisorID)

AND (advisor_remark.DeptID = advisor.DeptID)

AND (advisor_remark.CollegeID = advisor.CollegeID)

AND (advisor_remark.CampusID = advisor.CampusID)

INNER JOIN department ON (advisor.DeptID = department.DeptID)

AND (advisor.CollegeID = department.CollegeID)

AND (advisor.CampusID = department.CampusID)

INNER JOIN college ON (department.CollegeID = college.CollegeID)

AND (department.CampusID = college.CampusID)

INNER JOIN campus ON (college.CampusID = campus.CampusID)

WHERE student.NetworkId = pStudentNetworkID

AND advisor_remark.AdvisorID = pAdvisorID;

END

4.6. Design Patterns

4.6.1. Model-View-Controller (MVC)

4.6.1.1. Introduction

MVC or "Model-View-Controller" [26] is a software design pattern which was first

implemented in user interface framework of Smalltalk-80 v2.0 library of Xerox PARC.

MVC in Smalltalk-80 was used to solve the problem of generating multiple views based

one computer model. This pattern decomposes an application into three main components

[27]:

• A model that queries and manipulates data of an application;

• A view receives the data and the model’s states to render corresponding presenta-

tion and update user interface;

• A controller which catches user input such as keystrokes, mouse activities, etc.

It then translates them into command to alert the model for processing data and

choose the appropriate view for rendering;

4. IMPLEMENTATION TECHNOLOGIES 95

Figure 4.5. Structure of MVC model

4.6.1.2. Basic Concepts

Models [28, 27] are data structures that present data. Models usually include business

rules/logics and information which is used for making decisions about changing data and

changing the state of the models themselves. In procedural programming paradigm, a set of

procedures or sub-routines can be used to form a model. For object-oriented programming

paradigm, classes are usually applied to building models. A class Student, for instance, like

in Figure 4.6 can be a model that governs data about a student.

Figure 4.6. Structure of Student class

4. IMPLEMENTATION TECHNOLOGIES 96

The components produce a form presentation to visualize the states of models based on

data retrieved from models are called views. In a web application, views generate HTML

files or any requested type of files to respond to users.

The controllers directly handle user inputs such as keystrokes, HTTP requests, etc and

translate them into commands to manipulate the model and view components. Users only

interact with the application through the controllers.

4.6.1.3. Communication between MVC components in a web application

The control flow of an web application designed by applying MVC pattern starts with

the controller receiving a HTTP request. The controller has to parse the HTTP request

into an understandable form to the web application which includes named variable. The

controller then retrieves certain parameters to determine the model (application logic) that

needs to be notified for data processing and the view (user interface) that need to be ren-

dered. After getting the necessary information, the controller hands the request to the cho-

sen model. The chosen model queries and manipulates data from the back-end database.

The model also changes its state if required. Finally, the processing result is passed to the

view for rendering appropriate presentation or updating user interface.

4.6.2. Centralized controller - Front Controller Pattern

A complex web application may contain services that are used by all of components.

Authentication and authorization, for example, are common processes need to be per-

formed before allowing the users to access a service. With a large application, it is required

to have a mechanism to manage these components so that programmers can maintain and

extend the functionalities of these kind of services without worrying of forgetting to update

new changes in all segments of codes that use them. This is also a problem of an MVC

web application since it has many controllers to accept user input. Therefore, the common

services described above need to be applied in each controller by including the same file.

4. IMPLEMENTATION TECHNOLOGIES 97

In a large web application correctly managing this replication is a non trivial task. More-

over, a web application is less secure with multiple entry points. Therefore, having one

central gateway that provides uniform access mechanism to all services is a good solution

to overcome those disadvantages. This approach also more secure and maintainable since

we redirect all user requests to one centralized controller for preprocessing requirements

such as authentication and authorization. The centralized front controller helps to secure

applications, reduce redundancy and maintenance cost.

4.7. MVC in Zend Framework Implementation

The concept of MVC is applied in many frameworks for developing web applications.

Table 4.1 lists major and well-known frameworks that utilize MVC design pattern.

Language Frameworks

PHP Zend Framework, CakePHP, CodeIgniter,
Drupal, Symfony Framework, PureMVC

Ruby Ruby on Rails

C#.NET and VB.NET ASP.NET MVC Framework

Table 4.1. MVC implementations for different languages

Zend Framework implements the MVC through a set of abstract classes which includes:

• The Controller component of MVC design pattern is modeled by Zend_Control-

ler_Action. In addition to this class, Zend_Controller_Dispatcher_Abstract, Zend

_Controller_Plugin_Abstract, Zend_Controller_Request_Abstract, Zend_Control-

ler_Response_Abstract, and Zend_Controller_Router_Abstract automate the rout-

ing and information interchange among controllers;

• The View Helper, derived from Zend_Controller_Action_Helper_Abstract class,

corresponds to the View component of MVC design pattern;

4. IMPLEMENTATION TECHNOLOGIES 98

• The Model component of MVC design pattern does not have an explicit corre-

spondence class in Zend Framework. Zend Framework, however, provides set of

Zend_Db prefixed class to meet all the requirements of developers in implement-

ing Model components.

Figure 4.7. Zend implementation of MVC design pattern

Figure 4.7 presents the implementation of Zend Framework for modeling MVC de-

sign pattern. As a HTTP request comes to a web application, it first is processed by the

Front Controller. At the Front Controller, the URL is parsed to determine the name of

the specialized controller and action to generate responds. For example, the Student con-

troller has DegreeAudit action to produce the degree audit report. The Front Controller

also packed all the parameters into the HTTP Request. Having the specialized controller

and action’s names, the Front Controller dispatches the HTTP Request and Response ob-

jects to the specified Action Controller. The Action Controller then retrieves parameters

from the HTTP Request. It then requests data from one or more Models which communi-

cate and manipulate with the back-end database. When all the inputs are ready, the Action

Controller executes the processing steps, specify the view script name and send processing

result to the View component. View component uses the view script name to invoke the

code for generating the output for sending back to the users.

4. IMPLEMENTATION TECHNOLOGIES 99

In addition these abstract classes, Zend Framework also offers a wide variety of com-

ponents to facilitate web developers manage application configuration, implement security

solutions, and meet the complex requirements of web applications. These classes are listed

with brief overviews in the Appendix. Developers can also communicate with popular

web services of Yahoo, Google, Amazon, Delicious, Twitter, etc. to provide rich featured

applications using Zend Framework.

Zend Framework is a really useful tool for server-side web developers. Advantages

of this powerful and professional object-oriented programming library can be realized re-

gardless of the whether MVC pattern is used. Classes used in this thesis are just a subset

of the whole framework. Further potential use and benefits from using Zend Framework

need more careful investigation. In general, Zend Framework brings PHP applications to

a professional level that competes with commercial web applications. The use of PHP and

Zend Framework allow the current system to be customized, maintained and expanded to

accommodate changes and new requirements in the future.

5. Conclusion

Academic advising plays an important role in creating a friendly and relevant educa-

tional environment for college students. At the same time, advising can be a complex and

time consuming process for academic advisors especially with the dynamic nature of the

degree programs and degree requirements within educational institutions. Despite these

challenges, academic advisors always try to do their best to offer accurate, up-to-date and

consistent advising information to their students. The goal of this thesis is to explore the

design and implementation of a computerized tool to facilitate this process. IU-Advise was

designed to assist advisors in their efforts to provide quality academic advising services to

students.

Upon proper authentication, students are able to view their own grades for a specified

semester, unofficial transcript, advising history and degree audit which shows a student’s

progress toward a degree. Similarly, advisors can select a particular advisee from a list

and view their progress, conduct advising information and record notes to themselves and

other advisors or to the students. Special attention has been given to managing the privacy

of the advising history and advisor comments. The system is implemented using PHP,

Zend Framework, Apache, and MySQL and has been tested with Microsoft Windows Vista

and Fedora 10. These open source software packages not only cut down the expenses but

also offer a set of professional tools for developing a customizable, flexible and reliable

application. The use of MVC design pattern and Zend Framework make the system more

adaptable to new changes and requirements. These tools also increase the reusability of

components in IU-Advise system. MySQL database objects such as stored routines and

views enable the reusability of backend database. To manage security threats on server

side, Zend Framework provides useful classes for automating common security procedures

such as validating user inputs, removing unexpected tags, authenticating with a data table

100

5. CONCLUSION 101

in a database and authorizing users with a flexible but powerful data structures. The Ajax

model is applied for improving the user interaction with web applications.

This project helps in understanding the implementation of Zend Framework, principals

of MVC design pattern and PHP. This project exposes the author to the challenges of de-

signing and developing reusable software components. The implementation of this project

also equipped the author with deeper understandings of developing a web application at the

professional level. The thesis provides a foundation for additional exploration of applying

design patterns and using frameworks in the development of web applications. Additional

area which could be explored but was outside the scope of this thesis includes the im-

plementation of administrative subsystem. This subsystem provides a friendly user inter-

face to the university administrators as they attempt to add new information to the system.

Such new information includes new programs, courses, student information, prerequisite

requirements, advisor assignments and degree requirements. Another feature which can be

helpful would be to store tentative advising information such as course selections for future

semesters in database. This functionality allows an advisor to check if his or her advisee is

following previously agreed upon schedule.

Appendix A.

Zend Framework

102

A. ZEND FRAMEWORK 103

A.1. MVC Implementation Classes

A.1.1. Zend_Controller_Front and The Dispatching Loop

Figure A.1 shows how a request is received by the Zend Framework, how it is dis-

patched and handled by the proper Action Controller. Zend_Controller_Front is the main

component that controls the whole process of processing request from parsing HTTP from

user to sending responses to the clients. The Zend_Controller_Front also instantiates a

Zend_Controller_Response_Http object for sending response to clients.

Figure A.1. Dispatching cycle of Zend Framework

A. ZEND FRAMEWORK 104

To be more specific, the dispatching process needs to determine the controller and the

action needed to process requests. This sub process is called "Routing". To resolve the

controller and action name from the URL, the Zend_Front_Controller instantiate an ob-

ject of Zend_Controller_Router_Rewrite. This router contains all the declared routes to

controllers and actions in a web application. We can load these routes by using a config-

uration file and Zend_Config class. This router, however, always adds the default route

automatically to IndexController and IndexAction which are required for MVC applica-

tion. At the end of this Routing process, the router calls private method _setRequest-

Params() on the current Request object to set the module, controller, and action name.

The actual controller is then instantiate and the action is called in the dispatching loop by

an object of Zend_Controller_Dispatcher_Standard class. In figure A.1, we have two in-

ternal steps in the dispatch() call. The first step is the dynamic instantiation of the con-

troller we want to work with. This step is completed in the dispatch() method of the

Zend_Controller_Dispatcher_Standard object. In second step, the control is transferred

to the requested controller’s code in order to execute the action.

Finally, the controller checks to see if it needs to return the Response object to the caller

or directly send the response to clients.

A.1.2. Zend_Controller_Plugin_Abstract Class

Plugins are user code segments that are executed when a certain event is raised in the

scope of Zend_Front_Controller execution (figure A.1). They are useful complements to

Zend_Front_Controller for implementing common services that needs to be applied for all

controllers. To implement a plugin, we extend (inherit) Zend_Controller_Plugin_Abstract

class. We have to provide code for one or more of the following event method in our class:

• routeStartup() is raised before Zend_Front_Controller calls the router to determine

the controller and action to process the request;

• routeShutdown() is raised after the router finishes routing the request;

A. ZEND FRAMEWORK 105

• dispatchLoopStartup() is raised before Zend_Controller_Front get into the loop of

processing requests;

• preDispatch() is raised before the dispatcher dispatches the request. At this point,

we can alter the request or reset the its dispatched flag to replace the controller

and action or skip the current controller and action;

• postDispatch() is raised after an action is dispatched. We can change manipulate

the request and its dispatched flag if we need to apply new actions from other

methods;

• dispatchLoopShutdown() is raised after Zend_Controller_Front get out of the dis-

patch loop;

Listing A.1 defines a plugin to check the existence of a username in the session data.

If there is no username, the request is rerouted to the default controller. A sample code

segment used to register this plugin is shown in Listing A.2. After this registration, the

plugin is automatically triggered in the dispatchLoopStartup event.

Listing A.1. Plugin declaration
class IU_Plugin_Authenticate extends Zend_Controller_Plugin_Abstract

{

public function dispatchLoopStartup(Zend_Controller_Request_Abstract $request)

{

if(!isset(Zend_Registry::get(’sessionDb’)->username) ||

empty(Zend_Registry::get(’sessionDb’)->username)){
$request->setModuleName(’default’);

$request->setControllerName(’index’);

$request->setActionName(’index’);

}

}

}

In order to let the Zend_Front_Controller know of existence of a plugin, classes must be

registered by calling its registerPlugin() (Listing A.2). This method in turn calls the regis-

terPlugin() method of Zend_Controller_Plugin_Broker class. The object of the Zend_Con-

troller_Plugin_Broker then informs our registered plugins when an event is raised.

A. ZEND FRAMEWORK 106

Listing A.2. Register a plugin
// Register plugin

$pluginIU = new IU_Plugin_Authenticate();

$frontController->registerPlugin($pluginIU);

A.1.3. Zend_Controller_Action

Zend_Controller_Action is the parent class for implementing the real controller which

corresponds to the controller part of MVC design pattern. By inheriting this class, devel-

opers have access to the Request object for retrieving parameter’s values, view helper for

controlling how to render result, FrontController object for interacting with the dispatching

process, etc. To have a full feature parent class, a developer usually has to build his or her

own parent class depends on the particular requirements of each application. Listing A.3

is an example of a user-defined controller action class. In this custom controller class, a

protected method was added to validate username and role (line 6 to 11) for the child class

to reuse it.

Listing A.3. IU_Controller_Action class definition
1 abstract class IU_Controller_Action extends Zend_Controller_Action

2 {

3 /**
4 * This function checks valid username and role

5 */

6 protected function _isValidRoleAndUserName()

7 {

8 $roleValidator = new Zend_Validate_InArray($this->_validRoles);

9 return (!empty($this->_currentRole) and !empty($this->_currentUserName)
10 and $roleValidator->isValid($this->_currentRole));

11 }

12 }

A.1.4. Zend_Controller_Action_Helper_Abstract Class

The main aim of Zend_Controller_Action_Helper_Abstract is to supply Zend_Control-

ler_Action with runtime or on-demand functionalities. The Zend_Controller_Action_Hel-

per_Abstract’s child classes helps developers to automate the necessary services that need

to be applied after each controller action finishes processing. Helpers are triggered when

A. ZEND FRAMEWORK 107

a Zend_Controller_Action calls its notifyPreDispatch() and notifyPostDispatch() method

(figure A.1). For example, Zend_Controller_Action_Helper_ViewRender, which covers

the view part of MVC design pattern, is the default Zend_Controller_Action_Helper for

most normal HTTP requests. It is invoked in the notifyPostDispatch() method of each

action controller for producing HTML page. Another good example is ContextSwitch

Helper. This powerful helper allows one action controller to return more than formats

on a request. It means that an action controller can respond to HTTP requests which need

a HTML page as well as Ajax requests which prefer JSON or XML format. To auto-

matically trigger and manage helpers, Zend_Controller_Action_HelperBroker object uses

its Zend_Controller_Action_Helper stack. When an event in Zend_Controller_Action is

raised, Zend_Controller_Action_HelperBroker checks the stack and invokes the appropri-

ate method of all the helpers in the stack.

A.1.5. Zend Framework Class for Model Component

As we mentioned above, Zend Framework do not have explicit abstract classes for

implementing Model components. However, it implicitly facilitates developers with a set

of class which are prefixed by Zend_Db:

• Zend_Db_Adapter uses factory design pattern to handle creation of database con-

nection;

• Zend_Db_Table, Zend_Db_Table_Row, Zend_Db_Table_Row_Set, and Zend_Db

_ Table_Relationships abstract data tables, relationships between them and most

data manipulation operations using object-oriented programming;

• Zend_Db_Statement offers developers an object-oriented class to executing SQL

statements.

In the current implementation, we did not use all the provided Zend_Db classes. We make

use Zend_Db_Adapter, Zend_Db_Table and Zend_Db_Statement for developing Model

components.

A. ZEND FRAMEWORK 108

A.1.5.1. Zend_Db_Adapter and Factory design pattern

Nowadays, many relational database management system (RDBMS) are being offered

to developers, vendors and businesses. Developers can choose between the commercial

products like Oracle, Microsoft SQL Server and MySQL (Enterprise version) or from open

source solution like SQLite, PostgreSQL or compact version of MS SQL Server. In ad-

dition to these popular RDBMS, Microsoft Access of Microsoft Office Suite and Base of

Open Office Suite also contribute to richness of RDBMS market. With wide variety of

options, developers need to produce an application that can interact with more than one. To

meet this crucial need, PHP offers vendor-specific extensions for working most of popular

RDBMS. Although these extensions satisfy the developers’ desires, they make applications

less flexible because the differences in programming interfaces. Therefore, consolidating

the programming interfaces of different extensions is critical to increasing the flexibility of

developing and deploying web applications.

To overcome this challenge, we have to build an abstract class that does not only ac-

commodate the differences between extensions’ programming interfaces but also produces

standardize objects based on the configuration set up by developers. This type of poly-

morphic development can be achieved by applying Factory design pattern [29]. Figure A.2

presents the logical model of Factory design pattern [30]. In this design pattern, the client

factor does not create directly create an instance of the requested product. Instead it setups

and provides information to the factory factor which uses this to instantiate the appropriate

object and return it to the client.

Figure A.2. Logical model of Factory design pattern

A. ZEND FRAMEWORK 109

To better understand this pattern, let take a look at Listing A.4 and A.5. In two listings,

we only see two differences:

• The content of $ params array is specifically setup for each type of database

• The name of database driver: PDO_SQLITE and PDO_MYSQL

Both listings return $ db as a Zend_Db_Adapter. In both cases, a developer can use code

as shown in Listing A.6 to create server table on the database.

Listing A.4. Create MySQL database connection with Zend_Db factory
require_once ’Zend.php’;

Zend::loadClass("Zend_Db");

$params = array (

’host’ => ’127.0.0.1’,

’username’ => ’user’,

’password’ => ’password’,

’dbname’ => ’example’

);

$db = Zend_Db::factory(’PDO_MYSQL’, $params);

Listing A.5. Create SQLite database connection with Zend_Db factory
include "Zend.php";

Zend::loadClass("Zend_Db");

$params = array (’dbname’ => ’example’);

$db = Zend_Db::factory(’PDO_SQLITE’, $params);

Listing A.6. Execute query by using an object of Zend_Db factory
$db->query(’CREATE TABLE server (key, value)’);

A.1.5.2. Zend_Db_Table

Zend_Db_Table is an object-oriented programming interface that supports many meth-

ods for executing common data manipulation operations. This abstract class hides the detail

of building and submitting SQL statements to the server by using the public method con-

cept of object-oriented programming. Zend_Db_Table internally uses Zend_Db_Adapter

for connecting to databases and executing queries when we call its insert(), update(), and

delete() methods. It is more convenient to have a default database adapter available in the

A. ZEND FRAMEWORK 110

Zend_Db_Table_Abstract class since all our classes extends Zend_Db_Table and inherits

all protected members from it. To set a default Zend_Db_Adapter, we can use listing A.7

with $ dbAdapter created by using one of above code segment

Listing A.7. Set default database adapter
Zend_Db_Table_Abstract::setDefaultAdapter($dbAdapter);

After setting up the database adapter, the Zend_Db_Table class can be extended to

declare a customized class. In simple case, we only need to provide the table name that

matches with the one in database (Listing A.8).

Listing A.8. Zend_Db_Table definition
class Model_DbTable_AdvisorRemarks extends Zend_Db_Table

{

protected $_name = ’advisor_remark’;

}

By using the declaration from Listing A.8, we can insert a record to advisor_remark

table with following code segment:

Listing A.9. Zend_Db_Table insert() method
1 public function save(array $data)

2 {

3 $table = $this->_table;

4 $fields = $table->info(Zend_Db_Table_Abstract::COLS);

5
6 foreach ($data as $field => $value) {

7 if (!in_array($field, $fields)) {

8 unset($data[$field]);
9 }

10 }

11 return $table->insert($data);

12 }

Listing A.9 first retrieves the field list of current table by using the static property COLS

of Zend_Db_Table_Abstract class. The foreach loop from line 6 to 10 removes any field

that is not in the field list. Finally, it inserts the new record to database.

The procedure of deleting a record with Zend_Db_Table object includes building the

WHERE clause to determine the record need to be removed and a call to the delete() method

with this WHERE clause. The WHERE is usually built based on the primary key of a table.

In the constructing process of the WHERE clause (line 8 to 18), it is recommended to use

A. ZEND FRAMEWORK 111

the quoteInto() method of the Zend_Db_Adapter in order to make sure that we always have

correct quoted string and date. The database adapter retrieves this quoting information

based on the vendor-specific extension being used. This WHERE clause is actually an array

composed of many single statements. These statements are combined by AND operator by

default in the final SQL statement.

Listing A.10. Zend_Db_Table delete() method
1 public function deleteRows($pDataRows)

2 {

3 $currentAdapter = $this->_table->getAdapter();

4 $deletedCount = 0;

5
6 foreach($pDataRows as $currentRow){

7 // Build where clause

8 $whereStatement = array();
9 $whereStatement[] = $currentAdapter->quoteInto(’AdvisingDate = ?’,

10 $currentRow[’AdvisingDate’]);

11 $whereStatement[] = $currentAdapter->quoteInto(’AdvisorID = ?’,

12 $currentRow[’AdvisorID’]);

13 $whereStatement[] = $currentAdapter->quoteInto(’CollegeID = ?’,

14 $currentRow[’CollegeID’]);

15 $whereStatement[] = $currentAdapter->quoteInto(’DeptID = ?’,

16 $currentRow[’DeptID’]);

17 $whereStatement[] = $currentAdapter->quoteInto(’CampusID = ?’,

18 $currentRow[’CampusID’]);

19 $deletedCount += $this->_table->delete($whereStatement);
20 }

21 return $deletedCount;

22 }

Similar to the deleting procedure, the updating function in Listing A.11 has the equiva-

lent structure with WHERE clause constructing followed by a call to update method. How-

ever, there is a difference in parameter list of update() method. This method requires two

parameters. The first parameter is the new values in form an array of key⇒ value elements.

The key is the field or column name and value is the new value for the field. The WHERE

clause is used as the second parameter.

Listing A.11. Zend_Db_Table update() method
1 public function updateRows($pDataRows)

2 {

3 $currentAdapter = $this->_table->getAdapter();

4 $updatedCount = 0;

5 foreach($pDataRows as $currentRow){

6 // Build data

7 $newData = $currentRow[’NewData’];

A. ZEND FRAMEWORK 112

8 $whereStatement = array();
9 // Build where clause

10 $whereStatement[] = $currentAdapter->quoteInto(’AdvisingDate = ?’,

11 $currentRow[’AdvisingDate’]);

12 $whereStatement[] = $currentAdapter->quoteInto(’AdvisorID = ?’,

13 $currentRow[’AdvisorID’]);

14 $whereStatement[] = $currentAdapter->quoteInto(’CollegeID = ?’,

15 $currentRow[’CollegeID’]);

16 $whereStatement[] = $currentAdapter->quoteInto(’DeptID = ?’,

17 $currentRow[’DeptID’]);

18 $whereStatement[] = $currentAdapter->quoteInto(’CampusID = ?’,

19 $currentRow[’CampusID’]);

20 $updatedCount += $this->_table->update($newData, $whereStatement);

21 }

22 return $updatedCount;

23 }

A.1.5.3. Zend_Db_Statement

Zend_Db_Statement brings the convenience for developers with intensive knowledge

of SQL programming. It allows programmers to execute user-generated SQL statements,

call stored routines or complex queries that cannot be captured by Zend_Db class. By

providing this class, Zend Framework free developers from the time consuming process of

declaring Zend_Db_Table classes and defining relationships among them using Zend_Db_

Table_Relationship in order to make use of all the functionalities of Zend_Db. Zend_Db

_Statement is usually not created directly. In most scenarios, we use the query() method of

Zend_Db_Adapter to execute a statement for returning a Zend_Db_Statement object. List-

ing A.12 makes a call to degree_audit stored procedure and use the Zend_Db_Statement to

fetch the result of the processing.

Listing A.12. Example of Zend_Db_Statement object
// Get current database adapter

$currentDbAdapter = Zend_Registry::get(’dbAdapter’);

$degreeAuditStatement = $currentDbAdapter->query(’CALL degree_audit’);

$this->_degreeAuditDbStatement = $degreeAuditStatement->fetchAll();

A. ZEND FRAMEWORK 113

A.2. Useful Classes from Zend Framework

Although MVC implementation is the key feature of Zend Framework, it is not the only

gem in this functional programming framework. Zend Framework is not only shipped with

MVC idea but also packed in it all the best practices of object-oriented programming and

developing web programming of the web developer community.

A.2.1. Application Configuration with Zend_Config

Zend_Config provides an easy-to-use programming interface for accessing and man-

aging configuration data within an application. It helps developers deal with the troubles

caused by the dynamic nature of an application’s operation environment. A web appli-

cation is opened to all users. Therefore, its working environment is not always the same

and can be affected by a simple user interaction. Moreover, database configuration is not

the only data that a web application needs. A web application also has to provide the rich

and friendly graphical user interface for any user that interacts with it. This requirement

requires the application to support wide variety of languages and change the user interface

to match users’ cultural characteristics. These internationalization requirements require a

flexible mechanism to keep the application operating properly and developers from deal-

ing with unnecessary details of graphical presentation in developing process. Zend_Config

make sure that applications are flexible to change database configuration in case of a server

failure with least amount of coding effort or to have a new theme for web pages without

having to modify each single page. It can also boost the application deployment by us-

ing a staging hierarchy. This hierarchy allows developers to switch from developing to

production environment with the same configuration set.

Zend_Config supports three configuration file formats. We can use a native PHP INI

file, a XML or a simple PHP array for providing configuration data.This is an example of

PHP INI configuration file for an application. This configuration file includes three sections

correspond to three operational stage of the application. All three stages share the same

A. ZEND FRAMEWORK 114

database driver and database name. The application, however, uses different username and

password as a developer change the operational stage.

[production]
database.adapter = "PDO_MYSQL"
database.params.dbname = "advise-4"
database.params.username = "root"
database.params.hostname = "localhost"

[development : production]
;; Do not use "root" username for connecting to database
database.params.username = "developer"
database.params.password = "develop"

[testing : production]
database.params.username = "tester"
database.params.password = "test"

Listing A.13 shows the example of using Zend_Config object to retrieve configuration

data. Line 2 to 3 defines a global variable which sets the operational stage to ’development’.

Then, we use this global variable to tell the Zend_Config object to read the development

section of the above configuration file in line 6 to 8. Finally, line 11 to 14 demonstrates

how we access the value of each configuration key in the above configuration file.

Listing A.13. Example of using Zend_Config object
1 // Specify the operational stage

2 defined(’APPLICATION_ENVIRONMENT’)
3 or define(’APPLICATION_ENVIRONMENT’, ’development’);

4 // Instantiate Zend_Config object

5 $configuration = new Zend_Config_Ini(

6 APPLICATION_PATH . ’/config/app.ini’,

7 APPLICATION_ENVIRONMENT

8);

9 // Retrieve configuration data

10 $dbName = $configuration->database->params->dbname;

11 $dbLoginName = $configuration->database->params->username;

12 $dbPassword = $configuration->database->params->password;

13 $dbHostName = $configuration->database->params->hostname;

14 $dbAdapterName = $configuration->database->adapter;

A. ZEND FRAMEWORK 115

A.2.2. Application Security with Zend Framework

Since assisting web developers to rapid deliver consistent, friendly, and rich feature

web applications is the ultimate goal of Zend Framework, Zend Framework also provides

tools for programmers on server-side to secure applications from common type web attacks.

One basic step to protect applications from common web attacks is properly validating and

filtering users input before using them. For this purpose, Zend_Validate and Zend_Filter are

good developers’ companions. Zend_Db_Adapter’s quoteInto is a recommended method

to prevent SQL injection. Zend Framework also equips programmers with Zend_Acl and

Zend_Auth for implementing security using software mechanism.

Zend_Validate

Zend_Validate is stocked with a set of common needed validation functions. Develop-

ers can use single validator or building a chain of multiple validators to apply on single user

input on the order specified by users. Listing A.14 illustrates the use of Zend_Validate class

as a single validator. Listing A.15 is the validator chain definition which includes multiple

rules.

Listing A.14. Example of using Zend_Validate object
protected function _isValidRoleAndUserName()

{

$roleValidator = new Zend_Validate_InArray($this->_validRoles);

return (!empty($this->_currentRole) and !empty($this->_currentUserName)
and $roleValidator->isValid($this->_currentRole));

}

Listing A.15. Example of using Zend_Filter object
private function getValidators($minLength, $maxLength)

{

$validatorArray = array(array(’Alnum’, true), array(’NotEmpty’, true),
array(’StringLength’, true, $minLength, $maxLength));

return $validatorArray;

}

A. ZEND FRAMEWORK 116

Zend_Filter

Zend_Filter removes unwanted characters from untrusted user input. Similar to Zend

_Validate, Zend_Filter supports both single use and chaining modes. The filter array in

Listing A.16 removes whitespaces, tags, new line characters and HTML entities from the

input.

Listing A.16. Example of using Zend_Config object
private function getFilters()

{

$filterArray = array(’StringTrim’, ’StripTags’, ’HTMLEntities’,

’StripNewlines’);

return $filterArray;

}

Zend_Auth

Zend_Auth is used to establish identity based on a set of predefined credentials for

common scenarios. Currently, Zend_Auth supports database table, digest, HTTP, LDAP,

and Open ID authentication. Listing A.17 is an illustration of database table authentication.

Listing A.17. Example of using Zend_Auth object
// Create authentication adapter

$authAdapter = new Zend_Auth_Adapter_DbTable($dbAdapter);

// Set authentication table information

$authAdapter->setTableName($arrayTable[$pRoleName][0])

->setIdentityColumn($arrayTable[$pRoleName][1])

->setCredentialColumn($arrayTable[$pRoleName][2]);

// Set authentication information to check

$authAdapter->setIdentity($pUsername);

$authAdapter->setCredential($pPassword);

// Authenticate user information

$authResult = $authAdapter->authenticate();

if ($authResult->isValid()){

return TRUE;
}else{

return FALSE;
}

A. ZEND FRAMEWORK 117

Zend_Acl

Zend_Acl is a lightweight and flexible access control list to deploy a privileges man-

agement system. Developers has full control on defining roles, resources and authorization

with the use of classes of Zend_Acl. To use this control access list, users first defines roles

and resources. Then, this information needs to be register with a Zend_Acl object. After

everything is setup, programmers call the isValid() method of Zend_Acl to test the autho-

rization. Zend_Acl also supports inheritance between roles. Developers inform Zend_Acl

about this by providing the parent role for a new role in addRole() method. Listing A.18

defines the ‘advisor’ role, ‘Advisee List’ resource and allows the ‘advisor’ role to view

‘Advisee List’.

Listing A.18. Example of using Zend_Acl
defined(’RESOURCE_ADVISEE_LIST’)

or define(’RESOURCE_ADVISEE_LIST’, ’Advisee List’);

// Access control list definition

$zendAcl = new Zend_Acl();

// Setup role definition

$advisorRole = new Zend_Acl_Role(’advisor’);

$zendAcl->addRole($advisorRole)

// Setup resource definition

$zendAcl->add(new Zend_Acl_Resource(RESOURCE_ADVISEE_LIST))

// Allow an advisor to view advisee list

$zendAcl->allow(’advisor’, RESOURCE_ADVISEE_LIST, RESOURCE_CONTROL_VIEW);

Bibliography
[1] Joan F. Marques. Hitting and Missing the Jackpot: The NACADA 2005 National Conference. The

Mentor: An Academic Advising Journal, March 2006.

[2] O. Marques, Xundong Ding, and S. Hsu. Design and development of a web-based academic advising

system. Frontiers in Education Conference, 2001. 31st Annual, 3:S3C–6–10 vol.3, 2001.

[3] R. J. Multari. Integrating Technology into Advisement Services. The Mentor:An Academic Advising

Journal, May 2004.

[4] redLANTERN. History. redLANTERN, 2009. online at http://www.redlanternu.com/

content.jsp?articleId=80.

[5] Ohio University. DARS Online. Ohio University, 2006. Online at http://www.ohio.edu/

registrar/darsonline.cfm.

[6] University of San Diego. USD: DARS. University of San Diego, 2006. Online at http://www.

sandiego.edu/dars/.

[7] University of Missouri St. Louis. UMSL DARS - Degree Audit Reporting System. University of Mis-

souri - St. Louis. Online at http://www.umsl.edu/services/dars/.

[8] RedRock Software Corporation. AdvisorTrac. RedRock Software Corporation. Online at http://

www.advisortrac.net/.

[9] Unversity of Louisville. Undergraduate Academic Advising. Unversity of

Louisville. Online at http://louisville.edu/advising/advisortrac/

schedule-an-appointment-with-advisortrac.html.

[10] Western Kentucky University. Academic Advising and Retention Center. Unversity of Louisville, 2008.

Online at http://www.wku.edu/advising/index.php?page=advisortrac.

[11] Indiana University-Purdue University Fort Wayne. Advising and Academics. Indiana University-Purdue

University Fort Wayne. Online at http://www.ipfw.edu/as/advising/advisortrac.

shtml.

[12] redLANTERN. About Us. redLANTERN, 2003. Online at http://www.redlanternu.com/

about.

[13] Rosemary Pleva Flynn. OneStart/EDEN– A Description of IU’s Transaction Processing/Recordkeeping

Environment. Electronic Records Project Archivist, September 2001.

118

http://www.redlanternu.com/content.jsp?articleId=80
http://www.redlanternu.com/content.jsp?articleId=80
http://www.ohio.edu/registrar/darsonline.cfm
http://www.ohio.edu/registrar/darsonline.cfm
http://www.sandiego.edu/dars/
http://www.sandiego.edu/dars/
http://www.umsl.edu/services/dars/
http://www.advisortrac.net/
http://www.advisortrac.net/
http://louisville.edu/ advising/ advisortrac/ schedule- an- appointment- with- advisortrac.html
http://louisville.edu/ advising/ advisortrac/ schedule- an- appointment- with- advisortrac.html
http://www.wku.edu/advising/index.php?page=advisortrac
http://www.ipfw.edu/as/advising/advisortrac.shtml
http://www.ipfw.edu/as/advising/advisortrac.shtml
http://www.redlanternu.com/about
http://www.redlanternu.com/about

BIBLIOGRAPHY 119

[14] Office of the Registrar Bloomington Campus. Exploring Innovative Methods of Student Ser-

vice Delivery, 1998. http://www.wiche.edu/telecom/Resources/publications/

guide1003/guide/{82%C44D64-CA7A-11D3-9309-005004AD2ACC}_2200_1784.

htm.

[15] CSCI C442/A510 Database System, 2007. Online at http://mypage.iusb.edu/~hhakimza/

IU-ADVISE/.

[16] Jesse James Garrett. Ajax: A New Approach to Web Applications. Online at http://www.

adaptivepath.com/ideas/essays/archives/000385.php.

[17] Apache Software Foundation. Apache HTTP Server Project. Online at http://httpd.apache.

org/ABOUT_APACHE.html.

[18] Wikipedia. Robert McCool. Online at http://en.wikipedia.org/wiki/Robert_McCool.

[19] Mohammed J. Kabir. Apache Server 2 Bible. Hungry Minds, Inc, 909 Third Avenue, New York, NY

10022, 2002.

[20] Netcraft. April 2009 Web Server Survey. Online at http://news.netcraft.com/archives/

web_server_survey.html.

[21] PHP.net. What Can PHP Do. Online at http://us2.php.net/manual/en/

intro-whatcando.php.

[22] Tiobe Software The Coding Standard Company. TIOBE Programming Community Index for

May 2009. Online at http://www.tiobe.com/index.php/content/paperinfo/tpci/

index.html.

[23] PHP.net. SPL Introduction. Online at http://us2.php.net/manual/en/ref.spl.php.

[24] MySQL. MySQL Downloads. Online at http://dev.mysql.com/downloads/.

[25] W. Jason Gilmore. Beginning PHP and MySQL: From Novice to Professional, Third Edition. Apress,

2855 Telegraph Avenue, Suite 600, Berkeley, CA 94705, third edition, 2008.

[26] Steve Burbeck. Applications Programming in Smalltalk-80(TM):How to use Model-View-Controller

(MVC). Online at http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html.

[27] Sun Microsystems. Java BluePrints Model-View-Controller. Java BluePrints. Online at http://

java.sun.com/blueprints/patterns/MVC-detailed.html.

[28] Microsoft. Model-View-Controller. MSDN. Online at http://msdn.microsoft.com/en-us/

library/ms978748.aspx.

http://www.wiche.edu/telecom/Resources/publications/guide1003/guide/{82% C44D64-CA7A-11D3-9309-005004AD2ACC}_2200_1784.htm
http://www.wiche.edu/telecom/Resources/publications/guide1003/guide/{82% C44D64-CA7A-11D3-9309-005004AD2ACC}_2200_1784.htm
http://www.wiche.edu/telecom/Resources/publications/guide1003/guide/{82% C44D64-CA7A-11D3-9309-005004AD2ACC}_2200_1784.htm
http://mypage.iusb.edu/~hhakimza/IU-ADVISE/
http://mypage.iusb.edu/~hhakimza/IU-ADVISE/
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://httpd.apache.org/ABOUT_APACHE.html
http://httpd.apache.org/ABOUT_APACHE.html
http://en.wikipedia.org/wiki/Robert_McCool
http://news.netcraft.com/archives/web_server_survey.html
http://news.netcraft.com/archives/web_server_survey.html
http://us2.php.net/manual/en/intro-whatcando.php
http://us2.php.net/manual/en/intro-whatcando.php
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://us2.php.net/manual/en/ref.spl.php
http://dev.mysql.com/downloads/
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html
http://java.sun.com/blueprints/patterns/MVC-detailed.html
http://java.sun.com/blueprints/patterns/MVC-detailed.html
http://msdn.microsoft.com/en-us/library/ms978748.aspx
http://msdn.microsoft.com/en-us/library/ms978748.aspx

BIBLIOGRAPHY 120

[29] Kevin McArthur. Pro PHP: Pattenrs, Frameworks, Testing and more. Apress, 2855 Telegraph Avenue,

Suite 600, Berkeley, CA 94705, 2008.

[30] Doug Purdy. Exploring the Factory Design Pattern. Online at http://msdn.microsoft.com/

en-us/library/ms954600.aspx#factopattern_topic1.

http://msdn.microsoft.com/en-us/library/ms954600.aspx#factopattern_topic1
http://msdn.microsoft.com/en-us/library/ms954600.aspx#factopattern_topic1

	List of Tables
	List of Figures
	 1. Introduction
	 2. Literature Review
	 3. Project Design
	3.1. Privacy Policy
	3.2. Data Model
	3.3. Database Design
	3.4. Process Model
	3.5. User Interface

	 4. Implementation Technologies
	4.1. Application Architecture
	4.2. Ajax
	4.3. Apache Web Server
	4.4. Server-Side Scripting with PHP
	4.5. MySQL
	4.6. Design Patterns
	4.7. MVC in Zend Framework Implementation

	 5. Conclusion
	Appendix A. Zend Framework
	A.1. MVC Implementation Classes
	A.2. Useful Classes from Zend Framework

	Bibliography

