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Abstract 

Population proportion is the percentage of the population that has a particular 

characteristic.  The estimation for population proportion has broad applications in 

academic and industry fields such as insurance, banking, medical studies, 

bio-complexity and so on.  Regarding an estimation procedure for population 

proportion, sampling scheme plays an important role.  It directly decides the 

sampling space and the distribution of the sample statistics in interest, consequently, 

affects the results of estimations, from which people perceive and explore the 

characteristics of the population.  

Classical statistics in this area mostly focuses on a single random sample. 

Double sampling scheme has been increasingly gaining attention in the last three 

decades.  Compared with a single sampling, a double sampling scheme can save 

resources by culling a population early in the sampling process while keeping the 

error rates under the nominal level in a hypothesis testing framework.  The 

estimation process follows testing procedure as data cumulates.  One possible further 

extension is to work with a triple sampling designed data. 

 This thesis will focus on both point and confidence interval estimations for 

population proportions under a triple sampling scheme when the population following 

a binomial distribution.  On the basis of introducing and reviewing methodologies 

for both single and double sampling schemes, this paper will explore how a triple 

sampling machinery works for the estimating process under a binomial distribution.  

The later part of this paper renders algorithms and simulation results for both double 

and triple sampling estimations, to evaluate the performance of this newly developed 

methodology. 
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1. Introduction 

       The generic problem of estimating a population proportion occurs often in 

business and industry.  Data are often collected for the initial purpose of testing a 

hypothesis about the population proportion.  Compared with a single sampling 

scheme, a double sampling plan can save resources by culling a population early in 

the sampling process, but how is a triple sampling scheme?  Does a triple sampling 

scheme significantly improve the efficiency and accuracy of the estimation over a 

double sampling scheme?  Or it does not worth the extra labor and time payment in 

case of a close yield.  A question of how to create a confidence interval for a 

population proportion arises when we use a triple sampling plan.  This thesis is 

motivated by these questions. 

  There was a classic statistical literature in multistage sampling study.  

O’Brien and Fleming (1979) and Pocock (1977) had proposed to implement multiple 

stages testing procedure for clinic trials, as early as nineteen seventies.  They showed 

in their papers that it was remarkably better to divide patient entry into a few 

equal-sized groups and then carried out the test procedures based on accumulated data 

within each group, namely interval analysis, until sufficient statistical evidence was 

achieved.  All these experiments were designed for two treatments, normal response 

and known variance with possible extension to binary data. 

  In specifying multiple stage ideas into the statistical inference of a binomial 

distributed population, a double sampling is the most popular inheritance from 

multiple stage sampling scheme for its relative simplicity.  A good review of double 
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sampling scheme was given by Hewett and Spurrier (1983), which focused on 

determining optimal double sampling plans based on a specific hypothesis testing.  

More, Yeh and Van (1997) applied double sampling plan to the normally distributed 

population.  Another application of double sampling scheme using for exponentially 

distributed population was introduced by Bulgren and Hewett (1973). 

  It is not a surprise that a double sampling is an efficient approach for a 

binomial distributed population.  Cohen and Sackrowitz published their results of 

using Bayesian double sampling estimates for binomial distributed population, in 

1984.  An interesting paper was recently published by Ryan (2009) that addressed 

how to approximate confidence intervals for p in a double sampling scheme, where p 

is the notation for the population proportion of success.  The fundamental difference 

between these two papers was that in the first paper the sample size of second stage 

depends on the result of the first stage experiment; while the two sample sizes were 

prefixed in the latter publication.  Since I follow the second publication in my thesis 

closer than what I do with the first one, the detailed Bayes procedure of double 

sampling scheme is not discussed in this work. 

  The sections of this thesis are organized in a following sequence: Section 1 is 

an introduction and a brief review of sampling scheme literatures; Section 2 is a 

detailed review of Ryan(2009), the literature I followed as a basis of this thesis; 

Section 3 through Section 6 are the methodology study, numerical study, comparisons 

and discussions of simulation results respectively, where a full picture of the point 

estimation and confidence interval of the population proportion of a binomial 

distributed population under triple sampling scheme is rendered.    
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2. Literature Review 

       Sampling is a part of statistical practice that concerns with the selection of a 

representative or random subset of individual observations within a population of 

individuals intended to yield some knowledge about the population in interest, 

especially for the purposes of making predictions based on statistical inference. 

Sampling is an important aspect of data collection and there are various ways to 

obtain a random sample.  

         A sampling plan for the population proportion of a specific characteristic, 

denoted as p, from a binomial distributed population, is a sampling scheme and a set of 

rules for making decisions. The decision, based on counting the number of successes, 

named Sn, in a sample with size n, can be to accept the null hypothesis H0: p=p0, reject 

the null or accept the alternative hypothesis Ha: p ≠ p0 equivalently, or to take another 

sample. 

2.1 Single Sampling Scheme 

         For a single sampling plan, one sample of observations is selected at random, 

from the population which follows a binomial distribution with success proportion p.  

The conclusion about the value of p, equaling to p0 or not, is determined from a 

statistical procedure based on a specific testing statistic that is a function of the point 

estimator   .  Single sampling plan may be the most common and easiest plans to use. 

However, it is not the most efficient one in terms of the average number of sample sizes 

needed to satisfy the regulations.  
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2.1.1 Point Estimator for p in Single Sampling Scheme 

       To estimate the probability of success p, the simplest way is using a single 

sampling.  In other words, a total of n independent and identical Bernoulli 

experiments are performed before any data analysis and the number of success Sn are 

observed in order to derive an estimation of p, specifically, 

   
  

 
                                                                             

The probability mass function (PMF) of Sn is 

        
                                                

Where Sn takes values in 0, 1, …, n. The above formula can be easily derived and it 

can be found in any standard statistics textbook. 

2.1.2 Two Types of Confidence Intervals for p in Single Sampling Scheme 

       Although the point estimator of p, the population proportion, is straight 

forward for a simple random sampling, the interval estimation of the probability of 

success can be quite complicated depending on value of p and different sample size n 

if we wish to have guaranteed confidence level. 

       Henceforth, several notations would be introduced.  Let         be the 

point estimator of p and   be the 1- α/2 quantile of a N(0, 1) distribution. 

  For Wald interval of p (quoted by Ryan, 2009) is 
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Wald interval has been generally recommended given that np(1-p) is greater than 5 or 

10.  However, after serious scrutiny, Brown, Cai and DasGupta (2001) found that the 

a standard Wald interval may perform poorly and can be undesirable in many 

scenarios, even if n is large. 

       To address such a basic yet important problem in the statistical practice, 

several alternative intervals have been introduced and studied.  Among them, an 

effective method is Wilson interval approach, which is among the major topics of this 

thesis.  

  To illustrate Wilson interval approach, more quantities are introduced and 

denoted as follows: 

         
         ,         and      

    . 

  The Wilson interval of p (quoted by Brown, Cai and DasGupta, 2001) is 

   
  

 
 

  
          

  

  
                                          

2.2 Group Sequential Sampling Scheme 

       Except for the simplicity of a single sampling, there are many hindrances to 

apply the single sampling scheme in a real practice.  The foremost problem is nased 

on sample size.  According to the large number theorem, more experiments are 
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preferred in order to achieve asymptotic property.  However, in reality of binomial 

experiments, even if substantial amount of trials have been practiced, the outcomes 

could be hard to interpret or even misleading, especially in clinical trials.  On the 

other hand, unnecessary large sample may result in waste of resources. 

  In order to deal with such an issue, group sequential method has been 

developed in the area of clinical trials.  Armitage published his pioneer work in 1975.  

The idea of the group sequential method is to sample data sequentially and assess the 

accumulated data repeatedly as interim analyses.  More specifically, given two 

treatments under comparison, the assessment of accumulating data after every stage of 

patient entry would indicate whether or not the statistical evidence for a treatment 

difference is sufficient to stop the trial and conclude efficiency, or evidence is 

sufficient to claim futility. 

  The group sequential method has an advantage over fully sequential method. 

The fully sequential procedure is time consuming due to the continuous analysis of 

observations after every single entry.  It may not even feasible.  An adaptive way to 

reduce the amount of work is to perform the test at longer equally-spaced intervals, 

termed group sequential sampling scheme.  This modification was introduced by 

Pocock in 1977. 

  Furthermore, Demets and Ware (1982) presented their studies and 

conclusions of asymmetric group sequential boundaries for testing procedures in 

clinical trials. 

2.3 Double Sampling Scheme 

       A special case of group sequential method is double sampling scheme.  A 
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triple sampling scheme is a further extension of a double sampling scheme.  In a 

double sampling scheme, the whole experiment would be divided into two stages.  In 

the first stage,    subjects are observed.  Depending on the results of the first stage, 

      more subjects might be observed.  A criteria to determine whether the 

second stage is necessary is to compare the number of success (S) in the first stage 

with two integer numbers, denoted by a and b (        ).  If      , the 

second stage examination need to be carried out.  Otherwise, the experiment 

terminates at the end of the first stage. 

       It can be derived that the PMF of    under a double sampling plan is, 

                                                     

where        is the path count from       to       with formula 

        

   
                                                           

    
       

    

 

   

                                     
  

                                                                                         

in which, 

    
                                                 
                                                 

  

2.3.1 Point Estimator in Double Sampling Scheme 

       A natural way to estimate p is to calculate the ratio of the number of success 

S and the total times of experiments n as  
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Ryan (2009) presented a more sophisticated point estimator of p by applying uniform 

minimum variance unbiased estimator (UMVUE) to double sampling, given by 

                                                                     

where         is the path count from       to       with formula 

        

 
 

 
     

                                                                             

      
            

    

 

   

                                                   
  

which implies n - 1 observations with S - 1 successes. 

       Based on the work of Jung and Kim (2004), Equation (8) can be further 

reduced as 

   

 
 
 

 
    

 

  
                                                                     

 
 
  

   

 
      

    
   

    

 
      

    
   

                                                 

  

                       

In terms of variance,    and    are comparable.  Because of the simplicity of   , I 

will use    as the point estimator of  . 
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2.3.2 Confidence Interval for p in Double Sampling Scheme 

       Assume that      is observed.  Corresponding to the point estimator   , 

the endpoints of the confidence interval are the solutions,    and     to the 

equations 

 

 
          

       
   

         
 
 

   

                    

 

 
          

          

         
 
 

   

                   

where   is the sample space, the set of all possible outcomes of the experiment. 

       The right hand side of Equation (10) is an increasing function of    for    

in       , which can be verified by the first order derivative test.  Similar argument 

can be used to prove that the right-hand side of Equation (11) is a decreasing function 

of    for    in       .  Thus, these conditions ensure a unique solution of the 

confidence interval. 

       A more effective algorithm for double sampling scheme, Wilson confidence 

interval, is developed by Ryan (2009).  There are two possible scenarios as follows:  

(i)                                                                

                                  , if experiment terminates at stage 2, which leads 

to the following two equations: 
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and 

 

 
    

          
                      

                                                                                              

where                    and                              

approximately.  Moreover,                           random variables given    

and   . The Wilson interval has been given in Equation (4). The Equations (12) and 

(13) can be solved numerically and the similar arguments as the last paragraph 

guarantee a unique interval solution. 

In my numerical study, the Wilson interval, as a feasible approximation, is 

applied for the calculation of confidence interval instead of solving Equation (12) and 

(13).  The simulation results in section 6 validate that such a substitution does not 

bring unexpected violations, say of probability coverage ratio, length of confidence 

intervals and so on. 

3. Thesis studies: Estimation and Possible Advantages Under Triple 

Sampling Scheme 

       In this section, I will discuss about the main focus of the thesis, the point 

estimation and confidence interval, under a special type of group sequential sampling 

plan– triple sampling scheme. 
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3.1 Descriptions of Triple Sampling Scheme 

  Under a triple sampling scheme, the whole experiment would be divided into 

three stages.  It is an analogue to a group sequential sampling method with fixed 

maximum number of observations that have been divided into three blocks.   

  The data are collected in a following way.  For the first stage, n1 subjects 

would be observed.  Depending on the results of the first stage,       more 

subjects might be obtained.  The criteria to determine whether the second stage is 

necessary is to compare the number of successes (  ) in the first stage with two 

integer numbers, denoted by    and    (          ).  If         , the 

second stage sampling needs to be carried out.  Otherwise, the experiment terminates 

after the first stage.  The requirement to proceed to the third stage is similar to the 

rules above with another set of    and   . If    is not between    and   , the 

experiment stops. Otherwise, the experiment stops after completion of       more 

observations.  The following diagram is a demonstration of the procedure of triple 

sampling.   
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3.2 Analysis for Possible Advantages of Triple Sampling Scheme 

  First of all, the evaluation of a triple sampling plan is to assess the 

performance characteristics in interest.  Confidence interval is one of the important 

aspects when different sampling schemes are considered.  There are several criteria 

for comparing confidence intervals.  Two primary determinants are the actual 

coverage probability and the expected length of confidence interval.  Based on 

existing literatures, Wilson confidence interval under a double sampling plan was 

shown to be conservative, which means that the actual coverage probability is never 

less than, and often higher than,     for any           .  Also, for fixed   and n, 

the confidence interval under a double sampling scheme maintains expected length 

comparing to that from a single sampling design.  Since Wilson confidence interval 

approach under a triple sampling plan is similar to that under a double sampling plan 

in a analytical derivation of the formula but with possible one more stage, it is 

reasonable to anticipate that the outcomes of a triple sampling plan possess the same 

properties such as the conservativeness of confidence intervals. 

  Secondly, a triple sampling design includes two sets of designing parameters, 

(                 ), which renders more flexibility than a double sampling.  

Supposing we have adequate computational resource, all points in the parameter space 

would be evaluated and the best set of parameters, which maintains the smallest mean 

squared error of p to    and the shortest length of confidence interval, would be 

obtained.  In turn, a triple sampling design is expected to generate higher attained 

coverage ratio and comparable length of confidence interval with such set of 

parameters. 

  Moreover, the intervals are expected to be invariant to the choice of success 
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and failure in a symmetric triple sampling plan (                       ).  

An intuitive explanation is that by exchanging the values of   ’s and   ’s, the success 

probability   exchanges to    . Thus, the interval for p remains the same. 

  The second screen in a triple sampling design would focus on the study of the 

filtration of points which are rejected by the stage thresholds. 

4. My Research Objectives 

       Giving the description of a triple sampling scheme, my objective here is to 

find a point estimator for p and then extend the results to the confidence interval 

formula for p under this scheme, where population follows a binomial distribution.  

  The PMF of S under a triple sampling plan is given by 

                                                      

where        is the path count from       to       with the formula given below: 
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4.1 Point Estimator for p Under Triple Sampling Scheme 

  One natural way to estimate   is to calculate the ratio of the number of 

success S and the total number of experiments n, that is, 

 

   
 

 
                                                                               

  Extend the uniform minimum variance unbiased estimator (UMVUE) given 

by Ryan (2009) to a triple sampling scheme, we have 

                                                                   

where         is the path count from       to       that can be computed by the 

formula below: 

        

 
 
 
 
 

 
 
 
 
     

                                                                                               

      
            

      

  

    

                                                                    

      
             

     

  

    

      

      
                                      

  

    

  

4.2 Confidence Interval for p in Triple Sampling Scheme 

       Assume that      is observed.  Given a point estimator   , the endpoints 

of the confidence interval, if the original idea of Ryan(2009) is extended, with 
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confidence level 1-    are the solutions    and    of such equations: 

 

 
          

       
   

         
 
 

   

                 

 
 

 
          

          

         
 
 

   

              

where   is again the sampling space. 

       The right-hand side of Equation (18) is an increasing function of    for    

in       , which can be verified by taking the first order derivative.  Similar 

argument can be used to prove that the right-hand side of Equation (19) is a 

decreasing function of    for    in       .  Thus, these properties ensure a unique 

solution of the confidence interval. 

       In the following, I extend the result of Wilson confidence intervals further to 

the triple sampling scheme.  In this case, there are three possible situations would be 

involved:  

                                                                         

      (ii) the interval        , where pl and pu satisfy the Equations (20) and (21), if 

experiment terminates at stage 2 
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  (iii) the interval        , where pl and pu satisfy the Equations (22) and (23), 

if experiment terminates at stage 3. 

              
 

 
    

       

    
                           

            

                                                      

and 

                   
 

 
    

       

    
                  

         
                                   

       

                                                                                                                                              

where                   ,                              and 

                             approximately, according to the Central 

Limit Theorem.  Furthermore,               are independent.  The algebra 

expression of Wilson interval has been given by             .  The second set of 

equations, Equations (20) through (23), can be solved numerically and a similar 

argument to the last paragraph on Page 14 guarantees a unique solution for the 

confidence interval. 
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Given the complexity of the formulas of these equations, Equations (20) 

through (23), I will compute Wilson confidence interval in my numerical study for its 

computational feasibility.  As it will be seen in section 6, such a simplification does 

not compromise the accuracy of coverage ratio and the length of confidence interval. 

5. Simulations and Numerical Studies 

       I use R to implement triple sampling plan, where R is a programming 

language and software environment for statistical computing and graphing, for the 

major simulation procedure.  The simulation results in this thesis are based on 10000 

repetitions. 

5.1 Sample size determination 

  The first step of the simulation is to determine the sample size.  In this case, 

the Wald statistics is utilized to calculate the sample size.  Equation (3) provides the 

confidence interval when point estimator    is given.  Thus, sample size n can be 

expressed as 

  
          

  
                                                                

where   is the desired half length of the confidence interval.  If    is replaced by p 

and   is set to a specified value, the sample size can be approximated from Equation 

(24) (the maximum of          is 1/4).  Table 1 provides the approximation of 
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sample size under various confidence levels and various confidence interval lengths. 

Table 1 Approximation of Sample Size 

          n 
* 

0.9 0.05 271 

 0.04 423 

 0.03 752 

 0.02 1691 

 0.01 6764 

     0.05 385 

 0.04 601 

 0.03 1068 

 0.02 2401 

 0.01 9604 

     0.05 664 

 0.04 1037 

 0.03 1844 

 0.02 4147 

 0.01 16588 

     *    (1-  ) was substituted by 
 

 
 in the above calculations, which makes n conservative. 

 

  According to the results in Table 1, as the length of confidence interval 

decreases, the sample size increases sharply.  For example, given       , 
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             , contrast to              , the sample size increases by 

more than three times as the length cuts by one half.  As confidence level decreases, 

the sample size increases, which can be seen for given       ,          

                           ,        .  Codes for a single sampling scheme 

by using R program are given in AppendixⅠ. 

  It is worth noting that moderate sample sizes, for those significantly less 

than17000, should be taken into account.  Large sample sizes, for those larger than 

or equal to 17000, might be costly and often infeasible.  Hence, sample sizes of 

preliminary simulations in my numerical studies are chosen at 17000, 10000, 5000, 

2000, 1000, 500, 250 and 100, respectively.  Table 2 presents the results of 

preliminary simulations, where p0 is the value we test whether p equals to in the null 

hypothesis. 

Table 2 Results of Preliminary Simulations 

    p0 Sample Size Point Estimate Coverage Ratio Length of CI 

0.95 0.99 17000 0.9901 0.953 0.003 

  10000 0.9902 0.949 0.004 

  5000 0.9900 0.948 0.006 

  2000 0.9901 0.944 0.009 

  1000 0.9903 0.965 0.013 

  500 0.9909 0.965 0.018 

  250 0.9900 0.962 0.027 

  100 0.9901 0.920 0.049 
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0.95 0.7 17000 0.7002 0.955 0.014 

  10000 0.7006 0.948 0.018 

  5000 0.7002 0.948 0.025 

  2000 0.7000 0.955 0.040 

  1000 0.7001 0.953 0.057 

  500 0.7002 0.953 0.080 

  250 0.7002 0.955 0.113 

  100 0.7005 0.939 0.176 

0.95 0.5 17000 0.5000 0.949 0.015 

  10000 0.4990 0.946 0.020 

  5000 0.5001 0.954 0.028 

  2000 0.4996 0.950 0.044 

  1000 0.5002 0.947 0.062 

  500 0.5008 0.947 0.087 

  250 0.5000 0.947 0.123 

  100 0.5001 0.936 0.192 

0.95 0.2 17000 0.2000 0.953 0.012 

  10000 0.2000 0.949 0.016 

  1000 0.2001 0.948 0.049 

  500 0.2002 0.952 0.07 

  250 0.2001 0.951 0.099 

  100 0.2004 0.937 0.154 

0.95 0.02 17000 0.0200 0.946 0.004 

  10000 0.0200 0.949 0.005 
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  5000 0.0201 0.948 0.008 

  2000 0.0200 0.953 0.012 

  1000 0.0200 0.947 0.018 

  500 0.0201 0.966 0.025 

  250 0.0201 0.961 0.036 

  100 0.0200 0.95 0.061 

* The simulations with   = 0.01 and 0.1 are also performed.  The results preserve the same 

characteristic as   = 0.05 as shown in Table 2. 

 

  Based on the results in Table 2, a few conclusions can be drawn: 1) for the 

sample sizes considered here, the point estimator of p is pretty close to the actual 

value of p, with absolute deviations smaller than .001.  2) The ratio that the actual p 

included in the computed confidence interval, labeled as Coverage Ratio in Table 2, is 

near the nominal confidence level 1-        except scenario for n=100, which 

seems have 1-  less than nominal confidence levels.  In most cases, these ratios are 

larger than the nominated confidence level 0.95, which is consistent with the 

conservativeness of n and Wilson confidence intervals.  3) As the sample size 

decreases, the average length of confidence intervals gets larger.  4) There are no 

noticeable differences between the results at extreme proportions (p = 0.99 and 0.02) 

and the results at other moderate proportions (p = 0.7, 0.5 and 0.2). 

  According to the results of preliminary single stage simulations, the 

following sample sizes under 300 will be used: 120, 180, 240 and 300. 

5.2 Population proportion 
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  The next step in the simulation is to determine the values of population 

proportion to be considered in the study.  Ryan (2009) showed that the actual 

coverage probability and the expected length are similar for a single sampling scheme 

and a double sampling scheme except for               .  Therefore, 0.2, 0.5 and 0.7 

would be considered as representatives.  On the other hand, 0.02 and 0.99 are also 

under my study because they are the extreme values, which might lead to different 

results in terms of expected length of confidence intervals and coverage ratios. 

  In the following numerical studies, the average of all point estimators over 

repetitions is the simulated expected value of point estimator.  The percentage that 

the actual population proportion falls within the calculated confidence interval is the 

approximation of the true confidence level.  Moreover, the average length of 

confidence interval is also simulated in the numerical study. 

5.3 Design Parameters 

  Besides choosing sample size and proportion p in the numerical study, 

another issue is how to divide the whole sample process into sub-sample stages.  In 

addition, a set of design parameters,   ,   ,    and   , has to be determined.  

These two issues have been discussed in many literatures, such as Colton and 

McPherson (1976), Words (1974) and Pocock (1977) among others. 

  Colton and McPherson’s proposal (1976) is more relevant because the total 

sample size is fixed in this study.  The objective in their paper is to restrain both 

Type I or  -error associated with a null hypothesis and Type II or  -error associated 

with an alternative hypothesis.  Although hypothesis testing is not a focus of my 



23 

thesis, Colton and McPherson’s idea is applicable in terms of the selection of design 

parameters   ,   ,    and   . 

 

                                            

                                 A1            A2 

                                 B1        B2 

             0                                                   

Figure 1  Illustration of triple sampling. The abscissa axis is the number of 

observations in triple sampling scheme.  The ordinate axis represents the number of 

the success trials.  A1, B1, A2, and B2 define the stopping regions in the first stage and 

second stage respectively, where A1=[  ,   ], B1=[0,   ], A2=[  ,      ] and 

B2=[  ,   ]. 

 

 

  In Figure 1, the experiments might stop, for instance, at region A1 if the 

number of observed successes is greater than   .  Similarly, B1, A2 and B2 are 

stopping domains.  Assume that the underlying null hypothesis is H0: p=p0.  In the 

design of triple sampling scheme, if H0 is true, the population proportion p is p0 then it 

is more likely that the    would fall in the intervals [     ,      ] and [     , 

     ].  In turn, the outcomes falling in region A1, A2, B1 or B2 are the events with 

small probability.  Moreover, under H0 the number of successes (if the experiment 

stops at the third stage) might deviate from p0 with small probability.  We would like 

to keep these facts in mind in the process of choosing design parameters.  More 

specifically, the rule of determining the design parameters is to control the sum of the 

probabilities falling in the region of A1, A2, B1 or B2 at the nominal level.  It is easy to 
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understand that, the minimization of the possibility of above events can be achieved 

by widening the gates of   ,   ,    and   .  In turn, the advantage of the early 

termination of a triple sampling plan would be compromised.  Thus, a balance 

between the reduction of TypeⅠerror rate and early termination should be achieved to 

generate a well-performing design parameter set. 

  The design parameters can be solved from following equation, 

                                                   

                                          

                                          

                                               

                                             

                                                               

where the probabilities are computed at p=p0, and a somewhat arbitrary interval 

[        ,         ] is defined at the third stage.  If the experiment 

terminates at the third stage, the total number of successes outside of above range is 

regarded as “incorrect” or deviating from p0.  The numerical values of his interval 

can be varied according to the availability of computer resource and/or other 

statistical considerations. 

  It might be anticipated that the solutions to Equation (25) are not unique 

(Colton and McPherson 1976).  The plan with smallest Average Sample Number 

(ASN) is defined as the best choice.  Such a subject has become a separate research 

area.  Because this topic is not in the scope of my thesis, the detailed discussion is 
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omitted here.  In later parts, ASN is denoted as        in the tables of simulation 

analysis, through Tables 6 to 10. 

  Terms in Equation (25) can be expanded and expressed further as the 

following, 
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The straightforward yet time consuming way to numerically solve above set of 
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equations is to iterate   ,    and   .  For each stage, sets of possible combinations 

of a and b are plugged into the equations respectively to identify those sets that satisfy 

Equation (25).  If Equation (25) holds for a set of designing parameters, that set of 

parameter can be saved and utilized in practice. 

  However, the method above is somewhat a computationally intensive.  Thus, 

in practice of my numerical implementation I use following approach to make the 

computation attainable.  In a double sampling design, say there are totally 500 

possible pairs of values for (   ), the design parameters, can be obtained by the 

computing resource given sample size    for the first stage.  I take 10,000 iterations 

for each pair of (   ) to get a set of estimator of proportion, coverage ratio and the 

length of confidence interval.  Among those sets of results, I keep the first 100 pairs 

of design parameters which maintain coverage ratios higher than       The 

reasons for this criteria is that, there might be either more or less than 100 pairs 

satisfying the criteria, but it is unnecessary to have that many pairs eventually.  Thus, 

100 is a number chosen to save computing resource.  If the potential pairs are less 

than 100, we just use all available pairs.  For an extreme situation that none is 

revealed to be potential, we can use the pair that maintains the highest coverage ratio 

among all 500 pairs.  However, I didn’t encounter such an extreme issue in my 

numerical study.  The extreme scenario might exist though, but we infer the 

possibility of occurrence is few.  Then, I pick one pair of the (   ) which is the best 

point estimator, in the sense of having the smallest mean squared error (MSE) and the 

shortest length of confidence interval.  When these two features are not focused on 

one pair of (   ), we choose the pair with the smallest MSE as a compromise, 

because MSE is, I believe, a more persuadable criteria in representative of goodness 

of an estimator in general senses.  By far, this pair of (   ) is fixed as the pair of 
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design parameters of the first stage of this experiment.  Because each of the 100 

pairs of (   ) maintains a coverage ratio higher than   , MSE and the length of 

confidence interval come to my main concerns of picking right design parameters.  

The same approach is applied to a triple sampling design. 

  Although my method may not be an ideal one, it indeed provides sensible 

results that differ among single sampling, double sampling and triple sampling 

schemes.  Moreover, given the computation resource and the work load 

(                          ), my method is a compromise between accuracy 

and computability. 

5.4 Programming 

        Program codes for double & triple sampling scheme using R program are 

given in Appendix II and Appendix III, respectively. 

6. Comparisons & Analysis of Simulation Results 

  Based on the preparations in Section 5, the main simulation is implemented.  

In this section, the results of single sampling, double sampling and triple sampling 

schemes are presented and compared.  Various characteristics (point estimate, 

average length of confidence intervals and the probability of which the expected 

proportion is in the computed confidence interval) are compared in order to evaluate 

the efficiency of different sampling schemes.   

The analysis of simulation results for all of single, double and triple 
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sampling schemes are processed under two scenarios: p=p0 and p≠p0, in my numerical 

study. 

6.1 Simulation Analysis when p = p0 

6.1.1 Simulation Analysis for Single Sampling Scheme when p = p0 

  The overall performance of single sampling scheme is good.  The average 

length of confidence interval at small sample size (n = 120) is larger than that at large 

sample size (n = 300), which can be derived from the formula of Wald’s interval.  

The most noticeable phenomenon is that the probability of expected proportion within 

the confidence interval is lower than the     for all p and for almost all sample 

sizes, especially when p0 = 0.02 and 0.99.  These results are consistent with the 

results given by Ryan (2009) that the probability of expected proportion within the 

resulting confidence interval is lower than the     when p0           .  In 

addition, two proportions at extreme values are included in my numerical study.   

Table 5 Results of Single Sampling Scheme when p = p0 

n     p0                   Length of C.I. 

120 0.95 0.02 0.9087 0.020 0.046 

  0.2 0.9409 0.200 0.142 

  0.5 0.9459 0.501 0.178 

  0.7 0.9371 0.700 0.163 

  0.99 0.6893 0.990 0.028 
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180 0.95 0.02 0.8674 0.020 0.039 

  0.2 0.9465 0.200 0.116 

  0.5 0.9576 0.501 0.146 

  0.7 0.9500 0.701 0.133 

  0.99 0.8310 0.990 0.026 

240 0.95 0.02 0.8548 0.020 0.034 

  0.2 0.9394 0.200 0.101 

  0.5 0.9552 0.499 0.126 

  0.7 0.9492 0.702 0.116 

  0.99 0.9068 0.990 0.023 

300 0.95 0.02 0.9336 0.020 0.031 

  0.2 0.9436 0.200 0.090 

  0.5 0.9455 0.500 0.113 

  0.7 0.9434 0.700 0.104 

  0.99 0.8019 0.990 0.021 

6.1.2 Simulation Analysis for Double Sampling Scheme when p = p0 

  Compared with a single sampling, a double sampling scheme indeed 

improves the probability of expected proportion within the resulting confidence 

interval at the points where a single sampling scheme produces insufficient coverage 

probability.  The most striking result is the significant improvement of coverage ratio 

when            .  Such improvement was gained by compromising the length 

of confidence interval, which is reasonable in the first glance because larger length of 
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confidence interval would include more points.  However, high coverage ratio does 

not equivalent to cover E(p) as pointed out by Ryan (2009).  Therefore, the 

increasing of length of confidence interval is not due to higher coverage probability.  

A double sampling scheme does improve the accuracy compared with a single 

sampling. 

Table 6 Results of Double Sampling Scheme when p = p0 

n1 n2     p0 a b Coverage 

Ratio 
    Length 

of C.I. 

Early 

stops 
        

80 40 0.95 0.02 0 2 0.962 0.022 0.062 215 111.40 

   0.20 2 22 0.955 0.200 0.142 33 118.68 

   0.50 19 47 0.951 0.502 0.177 37 118.52 

   0.70 44 61 0.953 0.701 0.164 90 116.40 

   0.99 71 80 0.975 0.990 0.043 0 120.00 

120 60 0.95 0.02 0 60 0.971 0.019 0.044 0 180.00 

   0.20 11 29 0.954 0.199 0.118 87 174.78 

   0.50 26 67 0.965 0.502 0.146 72 175.68 

   0.70 39 89 0.952 0.700 0.135 109 173.46 

   0.99 13 119 0.975 0.991 0.035 317 160.98 

160 80 0.95 0.02 0 8 0.972 0.020 0.037 4 239.68 

   0.20 5 43 0.962 0.200 0.101 13 238.96 
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   0.50 26 91 0.955 0.501 0.126 33 237.36 

   0.70 31 118 0.953 0.700 0.117 108 231.36 

   0.99 13 160 0.969 0.991 0.028 0 240.00 

200 100 0.95 0.02 0 26 0.953 0.020 0.033 0 300.00 

   0.2 36 41 0.958 0.200 0.101 577 242.30 

   0.5 96 103 0.953 0.500 0.126 571 242.90 

   0.7 56 141 0.959 0.701 0.111 362 263.80 

   0.99 4 198 0.957 0.990 0.027 390 261.00 

6.1.3 Simulation Analysis for Triple Sampling Scheme when p = p0 

  The coverage ratio of confidence interval is much more improved under a 

triple sampling scheme compared with that under a single sampling scheme at the 

expense of widening the length of confidence interval.  The coverage ratios of 

confidence interval under a double sampling plan and a triple sampling plan are 

comparable.  So are the lengths of confidence intervals.  The most important 

conclusion from these results is that a triple sampling plan tends to stop early more 

often than a double sampling plan, which means smaller sample size can be used to 

obtain satisfactory results with desired statistical properties.  It has been noticed that 

     for almost all the cases.  This is because I have experimented all possible 

pairs of design parameters from     , and it turns out that the wide opening of the 

first gate does not compromise the accuracy of the final results.  In other words, a 
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double sampling plan is a good choice for designing the experiments because the 

parameter space is smaller than that of a triple sampling plan. 

  In the following, the comparison among single sampling, double sampling 

and triple sampling schemes will be presented. 

 
Table 7 Results of Triple Sampling Scheme when p = p0 

 

n1 

 

n2 

 

n3 

 

    

 

a1 

 

b1 

 

a2 

 

b2 

 

p0 

 

Coverage 

Ratio 

 

   

 

Length 

of C.I. 

 

Early 

stop 

 

      

60 30 30 0.95 0 2 0 2 0.02 0.968 0.0205 0.061 248 109.47 

    0 12 8 9 0.2 0.979 0.204 0.179 995 77.88 

    0 30 2 33 0.5 0.953 0.504 0.219 990 77.73 

    0 42 7 27 0.7 0.959 0.706 0.201 1000 76.50 

    0 60 23 87 0.99 0.964 0.99 0.054 946 91.62 

90 45 45 0.95 0 2 2 1 0.02 0.969 0.021 0.058 1000 122.90 

    0 18 5 11 0.2 0.958 0.204 0.148 999 115.29 

    0 45 2 48 0.5 0.968 0.507 0.182 1000 114.17 

    0 63 2 62 0.7 0.954 0.703 0.165 1000 115.61 

    0 90 1 50 0.99 0.969 0.99 0.041 1000 135.00 

120 60 60 0.95 0 3 1 56 0.02 0.969 0.021 0.042 221 215.46 
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    0 24 2 13 0.2 0.965 0.205 0.129 1000 152.64 

    0 60 4 64 0.5 0.96 0.503 0.157 1000 154.62 

    0 84 2 68 0.7 0.959 0.702 0.144 1000 153.66 

    0 119 0 164 0.99 0.974 0.991 0.035 1000 161.34 

150 75 75 0.95 0 3 4 4 0.02 0.969 0.021 0.041 836 211.73 

    0 30 3 15 0.2 0.959 0.203 0.114 1000 193.65 

    0 75 2 88 0.5 0.959 0.502 0.142 1000 192.00 

    0 105 2 107 0.7 0.966 0.703 0.130 1000 191.48 

    0 149 2 216 0.99 0.962 0.99 0.031 1000 209.70 

6.2 Simulation Analysis when p≠p0 

The result of simulation study, for the case when p and p0 are not equal, is 

even more persuasive than the case of equivalent value.  Under this situation, the 

true proportion p is different from the null hypothesis proportion p0.  However, the 

point estimate is very close to the true proportion p.  The coverage ratio of 

confidence interval is near the nominal level as well.  These are shown as the 

simulation results in Tables 8, 9 and 10.  These two pieces of evidence indicate the 

efficiency of double and triple sampling schemes, that is, even if p and p0 are not 

equal the estimation mechanism following of the multi-sampling hypothesis testing 

procedure could adjust the point estimate and confidence interval.  Also, the results 

indicate the goodness of the approach in the selection of design parameters that we 
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described in the last section. 

6.2.1 Simulation Analysis for Single Sampling Scheme under p≠p0 

Table 8 Results of Single Sampling Scheme under p≠p0 

n     p0 p                   Length of C.I. 

120 0.95 0.12 0.02 0.9086 0.021 0.046 

  0.3 0.2 0.9410 0.200 0.142 

  0.6 0.5 0.9458 0.500 0.178 

  0.8 0.7 0.9371 0.700 0.163 

  0.89 0.99 0.6893 0.990 0.028 

180 0.95 0.12 0.02 0.8674 0.021 0.039 

  0.3 0.2 0.9465 0.203 0.116 

  0.6 0.5 0.9576 0.499 0.146 

  0.8 0.7 0.9501 0.699 0.134 

  0.89 0.99 0.8311 0.990 0.025 

240 0.95 0.12 0.02 0.8547 0.020 0.034 

  0.3 0.2 0.9394 0.200 0.101 

  0.6 0.5 0.9552 0.504 0.126 

  0.8 0.7 0.9492 0.702 0.116 

  0.89 0.99 0.9068 0.990 0.023 

300 0.95 0.12 0.02 0.9335 0.020 0.031 

  0.3 0.2 0.9434 0.200 0.090 
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  0.6 0.5 0.9455 0.500 0.113 

  0.8 0.7 0.9434 0.700 0.104 

  0.89 0.99 0.8018 0.990 0.021 

6.2.2 Simulation Analysis for Double Sampling Scheme when p≠p0 

Table 9 Results of Double Sampling Scheme when p≠p0 

n1 n2   1-   p0 p a b Coverage     

Ratio 
   Length of 

C.I. 

Early 

stops 
          

80 40 0.95 0.12 0.02 0 2 0.9681 0.022 0.062 226 110.96 

   0.3 0.2 2 22 0.9791 0.202 0.143 49 118.04 

   0.6 0.5 19 47 0.9532 0.502 0.177 57 117.72 

   0.8 0.7 44 61 0.9592 0.706 0.164 126 114.96 

   0.89 0.99 71 80 0.9641 0.991 0.044 0 120.00 

120 60 0.95 0.12 0.02 0 60 0.9698 0.020 0.044 0 180.00 

   0.3 0.2 11 29 0.9580 0.203 0.120 115 173.10 

   0.6 0.5 26 67 0.9682 0.503 0.147 80 175.20 

   0.8 0.7 39 89 0.9543 0.702 0.136 131 172.14 

   0.89 0.99 13 119 0.9694 0.991 0.036 281 163.14 
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160 80 0.95 0.12 0.02 0 8 0.9695 0.020 0.037 0 240.00 

   0.3 0.2 5 43 0.9657 0.201 0.101 23 238.16 

   0.6 0.5 26 91 0.9660 0.502 0.126 33 237.36 

   0.8 0.7 31 118 0.9591 0.704 0.118 139 228.88 

   0.89 0.99 13 160 0.9741 0.990 0.028 0 240.00 

200 100 0.95 0.12 0.02 0 26 0.9694 0.020 0.033 0 300 

   0.3 0.2 36 41 0.9594 0.202 0.102 597 240.3 

   0.6 0.5 96 103 0.9593 0.501 0.126 564 243.6 

   0.8 0.7 56 141 0.9668 0.704 0.111 394 260.6 

   0.89 0.99 4 198 0.9621 0.990 0.026 429 257.1 

 

6.2.3 Simulation Analysis for Triple Sampling Scheme when p≠p0 

Table 10 Results of Triple Sampling Scheme when p≠p0 

 

n1 

 

n2 

 

n3 

 

1-   

 

a1 

 

b1 

 

a2 

 

b2 

 

p0 

 

p 

 

Coverage 

Ratio 

 

   

 

Length 

of C.I. 

 

Early 

stop 

 

      

60 30 30 0.95 0 2 0 2 0.12 0.02 0.9683 0.0205 0.061 242 109.71 

    0 12 8 9 0.3 0.2 0.9797 0.206 0.179 990 78.48 

    0 30 2 33 0.6 0.5 0.9530 0.510 0.220 996 76.53 
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    0 42 7 27 0.8 0.7 0.9596 0.711 0.200 1000 76.14 

    0 60 23 87 0.89 0.99 0.9641 0.990 0.054 938 91.86 

90 45 45 0.95 0 2 2 1 0.12 0.02 0.9691 0.021 0.057 1000 124.47 

    0 18 5 11 0.3 0.2 0.9583 0.205 0.148 1000 115.65 

    0 45 2 48 0.6 0.5 0.9687 0.506 0.181 1000 115.15 

    0 63 2 62 0.8 0.7 0.9548 0.708 0.166 1000 113.72 

    0 90 1 50 0.89 0.99 0.9697 0.990 0.042 1000 135 

120 60 60 0.95 0 3 1 56 0.12 0.02 0.9695 0.022 0.044 257 211.02 

    0 24 2 13 0.3 0.2 0.9654 0.204 0.128 1000 154.62 

    0 60 4 64 0.6 0.5 0.9601 0.505 0.159 1000 151.74 

    0 84 2 68 0.8 0.7 0.9591 0.706 0.144 1000 152.04 

    0 119 0 164 0.89 0.99 0.9741 0.991 0.035 1000 162.24 

150 75 75 0.95 0 3 4 4 0.12 0.02 0.9693 0.022 0.044 862 207.23 

    0 30 3 15 0.3 0.2 0.9592 0.203 0.115 1000 192.15 

    0 75 2 88 0.6 0.5 0.9592 0.505 0.143 1000 188.93 

    0 105 2 107 0.8 0.7 0.9666 0.704 0.130 1000 190.5 

    0 149 2 216 0.89 0.99 0.9624 0.990 0.031 998 208.05 

 One more observation is that compared to a single sampling scheme, the 

coverage ratios of double sampling and triple sampling schemes are higher.  Such 
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observation supports the idea that double sampling and triple sampling plans are more 

robust than a single sampling plan.  However, the general lower coverage ratios 

compared with nominal confidence levels indicate that the design specified in this 

study has room for improvements. 

6.3 Discussions 

  The first objective of my study is to compare the accuracy of point estimator 

under different sampling schemes.  Under a single sampling scheme all the results 

are very close to the expected proportion.  Double sampling and triple sampling 

schemes exhibit the similar characteristic, though the estimates under triple sampling 

design tend to be slightly higher than the expected proportion due to possible early 

stopping.  In general, the point estimate under a triple sampling plan produces good 

approximation of expected proportion. 

  The probability with which the expected proportion is in the calculated 

confidence interval is another factor to assess the efficiency and accuracy of sampling 

scheme.  Under a single sampling scheme, above probability appears close to     

when              .  But, the coverage ratio deviates a lot when            .  

Such insufficient has been greatly compensated in double and triple sampling schemes.  

Thus, double and triple sampling designs provide higher confidence level over that 

under a single sampling design.  When compared with a double sampling design, a 

triple sampling plan also gives higher achieved confidence level. 

  The average length of confidence intervals is implemented in the R.  

Generally speaking, the length of confidence interval is larger under a triple sampling 
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scheme than that under a single sampling scheme.  The difference might be the 

correction for the sampling bias when experiment terminates at first stage or second 

stage (Ryan 2009).  But, such an insignificant increase of length of confidence 

interval can be neglected given the significant improvement of coverage ratio. 

7. Conclusions 

  A Triple sampling scheme provides good prediction of the expected 

proportion in most cases.  The achieved confidence level is higher than     under 

a triple sampling scheme for             where the outcomes under a single 

sampling turn out to be not as good.  Compared with a double sampling scheme, a 

triple sampling scheme has better coverage ratio and comparable length of confidence 

interval. 

       Furthermore, without compromise of the length of confidence interval and 

coverage ratio, the sample size of a triple sampling scheme is typically much smaller 

than the sample size of single sampling scheme or double sampling scheme.  For 

example, when      , in a single sampling design, n = 300, coverage ratio = 

0.9455 and length of confidence interval = 0.113;  in a double sampling design, n = 

242.9, coverage ratio = 0.953 and length of confidence interval = 0.126;  while in a 

triple sampling plan, n = 192, coverage ratio = 0.959 and length of confidence interval 

= 0.142.  In this sense, a triple sampling plan possesses the feature of efficiency and 

economy. 

  The negative side of a triple sampling plan is that a triple sampling plan tends 

to produce biased, often higher, estimator of proportion p, which is also mentioned in 



40 

Ryan (2009).  But, given that a triple sampling plan tends to terminate early more 

often than a double sampling plan, a triple sampling plan still provides cost benefits 

over a double sampling plan.  A narrower first gate might produce more accurate 

estimator of p. 

  In summary, a triple sampling scheme is a good alternative of single 

sampling or double sampling plans.  Because a triple sampling scheme terminates 

early more often than a double sampling scheme, triple sampling scheme is 

recommended for the practice of statistics. 
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AppendixⅠ  R Program Codes for Single Sampling Scheme 

 

Simulation.Single<-function(repeats, N, alpha, p){ 

   intherange <- 0 

   pstorage <- NULL 

   kappa <- qnorm(1-alpha/2) 

   kappa2 <- kappa*kappa 

   length <- 0 

   for (i in 1: repeats){ 

      u <- runif(N) 

      success <- 0 

      for (j in 1: N){ 

         if (u[j] <= p){ 

            success <- success+1 

         } 

      } 

      pestimator <- success/N 

      pstorage[i] <- pestimator 

 

      success_ <- success+kappa2/2 

      N_ <- N+kappa2 

      p_ <- success_/N_ 

 

      s1 <- sqrt(pestimator*(1-pestimator)+kappa2/4/N) 

      s2 <- kappa*sqrt(N)/N_ 

 

      plower <- p_-s1*s2 

      pupper <- p_+s1*s2 

      if (p >= plower && p <= pupper){ 

         intherange <- intherange+1 

         length <- length+pupper-plower 

      } 

   } 

   confidence <- intherange/repeats 

   pave <- mean(pstorage) 

   length <- length/intherange 

   print(confidence) 
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   print(pave) 

   print(length) 

} 

 

repeats <- 10000 

N <- 17000 

alpha <- 0.01 

p <- 0.99 

 

Simulation.Single(repeats, N, alpha, p) 

       

 

 * In R program codes above: 

repeats = times of repetitions,      N = sample size, 

alpha = confidence level,          p = success proportion. 
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AppendixⅡ  R Program Codes for Computations of Table 3 and 

            Table 4 

 

Integral<-function(N1, N2, a1, b1, a2, b2, p){ 

   temp1 <- pbinom(b1+1, N1,p) 

   A1 <- 1-temp1 

   B1 <- pbinom(a1-1, N1, p) 

 

### a1+N2 > b2+1 

   A2 <- 0 

   for (s in (b2+1): (b1+N2)){ 

      for (ps in a1 : b1){ 

         A2 <- A2+dbinom(ps, N1, p)*dbinom(s-ps, N2, p) 

      } 

   } 

 

### a2-1 < b1 

   B2 <- 0 

   for (s in a1 : a2-1){ 

      for (ps in a1: a2-1){ 

         B2 <- B2+dbinom(ps, N1, p)*dbinom(s-ps, N2, p) 

      } 

   } 

   C <- 0 

   for (s in a1: a2-1){ 

      for (ps in a1: b1){ 

         C <- C+dbinom(ps, N1, p)*dbinom(s-ps, N2, p) 

      } 

   } 

   sum <- A1+B1+A2+B2 

   sum2 <- A1+B1+C 

   print(A1) 

   print(B1) 

   print(A2) 

   print(B2) 

   print(sum) 

   print(C) 
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   print(sum2) 

   print(A1+B1) 

} 

 

N1 <- 12 

N2 <- 12 

a1 <- 11 

b1 <- 12 

a2 <- 14 

b2 <- 16 

p <- 0.99 

 

Integral(N1, N2, a1, b1, a2, b2, p) 
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Appendix Ⅲ  R Program Codes for Double Sampling Scheme 

 

boundsolver<-function(N1, N2, a, b, p, alpha, success, indicator){ 

   tolerance <- 1e-9 

   tail <- alpha/2 

   dif <- 1 

   if (indicator == 1){ 

      high <- p; low <- 0; plower <- low 

 

      pa <- 1-pnorm(b, mean = N1*plower, sd = N1*plower*(1-plower)) 

      f <- function(x) dnorm(x, mean = N1*plower, sd = 

N1*plower*(1-plower))*(1-pnorm(success-x, mean = N2*plower, sd = 

N2*plower*(1-plower))) 

      pb <- integrate(Vectorize(f), a, b)$value 

      pr <- pa+pb-tail 

 

      while((abs(pr) > tolerance) && (abs(dif) > 1e-3)){ 

         pah <- 1-pnorm(b, mean = N1*high, sd = N1*high*(1-high)) 

         g <- function(x) dnorm(x, mean = N1*high, sd = 

N1*high*(1-high))*(1-pnorm(success-x, mean = N2*high, sd = N2*high*(1-high))) 

         pbh <- integrate(Vectorize(g), a, b)$value 

         prh <- pah+pbh-tail 

 

         pre <- plower 

         if (pr*prh < 0){ 

            low <- plower 

            plower <- (high+low)/2 

            pa <- 1-pnorm(b, mean = N1*plower, sd = N1*plower*(1-plower)) 

            f <- function(x) dnorm(x, mean = N1*plower, sd = 

N1*plower*(1-plower))*(1-pnorm(success-x, mean = N2*plower, sd = 

N2*plower*(1-plower))) 

            pb <- integrate(Vectorize(f), a, b)$value 

            pr <- pa+pb-tail 

         }else{ 

            high <- plower 

            plower <- (high+low)/2 

            pa <- 1-pnorm(b, mean = N1*plower, sd = N1*plower*(1-plower)) 
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            f <- function(x) dnorm(x, mean = N1*plower, sd = 

N1*plower*(1-plower))*(1-pnorm(success-x, mean = N2*plower, sd = 

N2*plower*(1-plower))) 

            pb <- integrate(Vectorize(f), a, b)$value 

            pr <- pa+pb-tail 

         } 

         pcurr <- plower 

         dif <- pcurr-pre 

      } 

      plower 

   }else{ 

      high <- 1; low <- p; pupper <- high 

 

      pa <- pnorm(a, mean = N1*pupper, sd = N1*pupper*(1-pupper)) 

      f <- function(x) dnorm(x, mean = N1*pupper, sd = 

N1*pupper*(1-pupper))*pnorm(success-x, mean = N2*pupper, sd = 

N2*pupper*(1-pupper)) 

      pb <- integrate(Vectorize(f), a, b)$value 

      pr <- pa+pb-tail 

 

      while((abs(pr) > tolerance) && (abs(dif) > 1e-3)){ 

         pah <- pnorm(a, mean = N1*high, sd = N1*high*(1-high)) 

         g <- function(x) dnorm(x, mean = N1*high, sd = 

N1*high*(1-high))*pnorm(success-x, mean = N2*high, sd = N2*high*(1-high)) 

         pbh <- integrate(Vectorize(g), a, b)$value 

         prh <- pah+pbh-tail 

 

         pre <- pupper 

         if (pr*prh < 0){ 

            low <- pupper 

            pupper <- (high+low)/2 

            pa <- pnorm(a, mean = N1*pupper, sd = N1*pupper*(1-pupper)) 

            f <- function(x) dnorm(x, mean = N1*pupper, sd = 

N1*pupper*(1-pupper))*pnorm(success-x, mean = N2*pupper, sd = 

N2*pupper*(1-pupper)) 

            pb <- integrate(Vectorize(f), a, b)$value 

            pr <- pa+pb-tail 

         }else{ 
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            high <- pupper 

            pupper <- (high+low)/2 

            pa <- pnorm(a, mean = N1*pupper, sd = N1*pupper*(1-pupper)) 

            f <- function(x) dnorm(x, mean = N1*pupper, sd = 

N1*pupper*(1-pupper))*pnorm(success-x, mean = N2*pupper, sd = 

N2*pupper*(1-pupper)) 

            pb <- integrate(Vectorize(f), a, b)$value 

            pr <- pa+pb-tail 

         } 

         pcurr <- pupper 

         dif <- pcurr-pre 

      } 

      pupper 

   } 

}                

         

Simulation.Double<-function(repeats, N1, N2, a, b, alpha, p){ 

### Some initialization 

 

   intherange <- 0 

   pstorage <- NULL 

 

   kappa <- qnorm(1-alpha/2) 

   kappa2 <- kappa*kappa 

   lower <- 1 

   upper <- 2 

   stagecount <- 0 

   totallength <- 0 

 

### The main simulation part 

 

   for (i in 1: repeats){ 

      print(i) 

      u1 <- runif(N1) 

      success <- 0 

      for (j in 1: N1){ 

         if (u1[j] <= p){ 

            success <- success+1 
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         } 

      } 

      pestimator <- success/N1 

      stage1 <- 1 

       

      if (success <= b && success >= a){ 

         u2 <- runif(N2) 

         for (k in 1: N2){ 

            if (u2[k] <= p){ 

               success <- success+1 

            } 

         } 

         pestimator <- success/(N1+N2) 

         stage1 <- 0 

      } 

      pstorage[i] <- pestimator 

      if (stage1 == 1){ 

         stagecount <- stagecount+1 

         success_ <- success+kappa2/2 

         N_ <- N1+kappa2 

         p_ <- success_/N_ 

         s1 <- sqrt(pestimator*(1-pestimator)+kappa2/4/N1) 

         s2 <- kappa*sqrt(N1)/N_ 

         plower <- p_-s1*s2 

         pupper <- p_+s1*s2 

      }else{ 

         plower <- boundsolver(N1, N2, a, b, pestimator, alpha, success, lower) 

         pupper <- boundsolver(N1, N2, a, b, pestimator, alpha, success, upper) 

      } 

      totallength <- totallength+pupper-plower 

      if (p >= plower && p <= pupper){ 

         intherange <- intherange+1 

      } 

   } 

   print(totallength/repeats) 

   confidence <- intherange/repeats 

   pave <- mean(pstorage) 

   print(confidence) 
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   print(pave) 

   print("Stop at 1st stage") 

   print(stagecount) 

} 

 

repeats <- 10000 

N1 <- 12 

N2 <- 12 

a <- 0 

b <- 5 

alpha <- 0.01 

p <- 0.2 

 

Simulation.Double(repeats, N1, N2, a, b, alpha, p) 
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Appendix Ⅳ  R Program Codes for Triple Sampling Scheme 

 

boundsolver<-function(N1, N2, a, b, p, alpha, success, indicator){ 

   tolerance <- 1e-9 

   tail <- alpha/2 

   dif <- 1 

   if (indicator == 1){ 

      high <- p; low <- 0; plower <- low 

 

      pa <- 1-pnorm(b, mean = N1*plower, sd = N1*plower*(1-plower)) 

      f <- function(x) dnorm(x, mean = N1*plower, sd = 

N1*plower*(1-plower))*(1-pnorm(success-x, mean = N2*plower, sd = 

N2*plower*(1-plower))) 

      pb <- integrate(Vectorize(f), a, b)$value 

      pr <- pa+pb-tail 

 

      while((abs(pr) > tolerance) && (abs(dif) > 1e-3)){ 

         pah <- 1-pnorm(b, mean = N1*high, sd = N1*high*(1-high)) 

         g <- function(x) dnorm(x, mean = N1*high, sd = 

N1*high*(1-high))*(1-pnorm(success-x, mean = N2*high, sd = N2*high*(1-high))) 

         pbh <- integrate(Vectorize(g), a, b)$value 

         prh <- pah+pbh-tail 

 

         pre <- plower 

         if (pr*prh < 0){ 

            low <- plower 

            plower <- (high+low)/2 

            pa <- 1-pnorm(b, mean = N1*plower, sd = N1*plower*(1-plower)) 

            f <- function(x) dnorm(x, mean = N1*plower, sd = 

N1*plower*(1-plower))*(1-pnorm(success-x, mean = N2*plower, sd = 

N2*plower*(1-plower))) 

            pb <- integrate(Vectorize(f), a, b)$value 

            pr <- pa+pb-tail 

         }else{ 

            high <- plower 

            plower <- (high+low)/2 

            pa <- 1-pnorm(b, mean = N1*plower, sd = N1*plower*(1-plower)) 
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            f <- function(x) dnorm(x, mean = N1*plower, sd = 

N1*plower*(1-plower))*(1-pnorm(success-x, mean = N2*plower, sd = 

N2*plower*(1-plower))) 

            pb <- integrate(Vectorize(f), a, b)$value 

            pr <- pa+pb-tail 

         } 

         pcurr <- plower 

         dif <- pcurr-pre 

      } 

      plower 

   }else{ 

      high <- 1; low <- p; pupper <- high 

 

      pa <- pnorm(a, mean = N1*pupper, sd = N1*pupper*(1-pupper)) 

      f <- function(x) dnorm(x, mean = N1*pupper, sd = 

N1*pupper*(1-pupper))*pnorm(success-x, mean = N2*pupper, sd = 

N2*pupper*(1-pupper)) 

      pb <- integrate(Vectorize(f), a, b)$value 

      pr <- pa+pb-tail 

 

      while((abs(pr) > tolerance) && (abs(dif) > 1e-3)){ 

         pah <- pnorm(a, mean = N1*high, sd = N1*high*(1-high)) 

         g <- function(x) dnorm(x, mean = N1*high, sd = 

N1*high*(1-high))*pnorm(success-x, mean = N2*high, sd = N2*high*(1-high)) 

         pbh <- integrate(Vectorize(g), a, b)$value 

         prh <- pah+pbh-tail 

 

         pre <- pupper 

         if (pr*prh < 0){ 

            low <- pupper 

            pupper <- (high+low)/2 

            pa <- pnorm(a, mean = N1*pupper, sd = N1*pupper*(1-pupper)) 

            f <- function(x) dnorm(x, mean = N1*pupper, sd = 

N1*pupper*(1-pupper))*pnorm(success-x, mean = N2*pupper, sd = 

N2*pupper*(1-pupper)) 

            pb <- integrate(Vectorize(f), a, b)$value 

            pr <- pa+pb-tail 

         }else{ 
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            high <- pupper 

            pupper <- (high+low)/2 

            pa <- pnorm(a, mean = N1*pupper, sd = N1*pupper*(1-pupper)) 

            f <- function(x) dnorm(x, mean = N1*pupper, sd = 

N1*pupper*(1-pupper))*pnorm(success-x, mean = N2*pupper, sd = 

N2*pupper*(1-pupper)) 

            pb <- integrate(Vectorize(f), a, b)$value 

            pr <- pa+pb-tail 

         } 

         pcurr <- pupper 

         dif <- pcurr-pre 

      } 

      pupper 

   } 

} 

 

boundsolverT<-function(N1, N2, N3, a1, b1, a2, b2, p, alpha, success, indicator){ 

   tolerance <- 1e-9 

   tail <- alpha/2 

   dif <- 1 

   if (indicator == 1){ 

      high <- p; low <- 0; plower <- low 

 

      pa <- 1-pnorm(b1, mean = N1*plower, sd = N1*plower*(1-plower)) 

      f <- function(x) dnorm(x, mean = N1*plower, sd = 

N1*plower*(1-plower))*(1-pnorm(b2-x, mean = N2*plower, sd = 

N2*plower*(1-plower))) 

      pb <- integrate(Vectorize(f), a1, b1)$value 

      pc <- integrate(function(y){ 

         sapply(y, function(y){ 

            integrate(function(x) dnorm(x, mean=N1*plower, 

sd=N1*plower*(1-plower) )*dnorm(y-x, mean=N2*plower, 

sd=N2*plower*(1-plower)), a1, b1)$value*(1-pnorm(success-y, mean = N3*plower, 

sd = N3*plower*(1-plower))) 

      })}, a2, b2)$value 

 

      pr <- pa+pb+pc-tail 
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      while((abs(pr) > tolerance) && (abs(dif) > 1e-3)){ 

         pah <- 1-pnorm(b1, mean = N1*high, sd = N1*high*(1-high)) 

         ff <- function(x) dnorm(x, mean = N1*high, sd = 

N1*high*(1-high))*(1-pnorm(b2-x, mean = N2*high, sd = N2*high*(1-high))) 

         pbh <- integrate(Vectorize(ff), a1, b1)$value 

         pch <- integrate(function(y){ 

            sapply(y, function(y){ 

               integrate(function(x) dnorm(x, mean=N1*high, 

sd=N1*high*(1-high) )*dnorm(y-x, mean=N2*high, sd=N2*high*(1-high)), a1, 

b1)$value*(1-pnorm(success-y, mean = N3*high, sd = N3*high*(1-high))) 

         })}, a2, b2)$value 

 

         prh <- pah+pbh+pch-tail 

 

         pre <- plower 

         if (pr*prh < 0){ 

            low <- plower 

            plower <- (high+low)/2 

            pa <- 1-pnorm(b1, mean = N1*plower, sd = N1*plower*(1-plower)) 

            f <- function(x) dnorm(x, mean = N1*plower, sd = 

N1*plower*(1-plower))*(1-pnorm(b2-x, mean = N2*plower, sd = 

N2*plower*(1-plower))) 

            pb <- integrate(Vectorize(f), a1, b1)$value 

            pc <- integrate(function(y){ 

               sapply(y, function(y){ 

                  integrate(function(x) dnorm(x, mean=N1*plower, 

sd=N1*plower*(1-plower) )*dnorm(y-x, mean=N2*plower, 

sd=N2*plower*(1-plower)), a1, b1)$value*(1-pnorm(success-y, mean = N3*plower, 

sd = N3*plower*(1-plower))) 

            })}, a2, b2)$value 

            pr <- pa+pb+pc-tail 

         }else{ 

            high <- plower 

            plower <- (high+low)/2 

            pa <- 1-pnorm(b1, mean = N1*plower, sd = N1*plower*(1-plower)) 

            f <- function(x) dnorm(x, mean = N1*plower, sd = 

N1*plower*(1-plower))*(1-pnorm(b2-x, mean = N2*plower, sd = 

N2*plower*(1-plower))) 
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            pb <- integrate(Vectorize(f), a1, b1)$value 

            pc <- integrate(function(y){ 

               sapply(y, function(y){ 

                  integrate(function(x) dnorm(x, mean=N1*plower, 

sd=N1*plower*(1-plower) )*dnorm(y-x, mean=N2*plower, 

sd=N2*plower*(1-plower)), a1, b1)$value*(1-pnorm(success-y, mean = N3*plower, 

sd = N3*plower*(1-plower))) 

            })}, a2, b2)$value 

            pr <- pa+pb+pc-tail 

         } 

         pcurr <- plower 

         dif <- pcurr-pre 

      } 

      plower 

   }else{ 

      high <- 1; low <- p; pupper <- high 

 

      pa <- pnorm(a1, mean = N1*pupper, sd = N1*pupper*(1-pupper)) 

      f <- function(x) dnorm(x, mean = N1*pupper, sd = 

N1*pupper*(1-pupper))*pnorm(a2-x, mean = N2*pupper, sd = 

N2*pupper*(1-pupper)) 

      pb <- integrate(Vectorize(f), a1, b1)$value 

      pc <- integrate(function(y){ 

         sapply(y, function(y){ 

            integrate(function(x) dnorm(x, mean=N1*pupper, 

sd=N1*pupper*(1-pupper) )*dnorm(y-x, mean=N2*pupper, 

sd=N2*pupper*(1-pupper)), a1, b1)$value*pnorm(success-y, mean = N3*pupper, sd 

= N3*pupper*(1-pupper)) 

      })}, a2, b2)$value 

 

      pr <- pa+pb+pc-tail 

 

      while((abs(pr) > tolerance) && (abs(dif) > 1e-3)){ 

         pah <- pnorm(a1, mean = N1*high, sd = N1*high*(1-high)) 

         g <- function(x) dnorm(x, mean = N1*high, sd = 

N1*high*(1-high))*pnorm(success-x, mean = N2*high, sd = N2*high*(1-high)) 

         pbh <- integrate(Vectorize(g), a1, b1)$value 

         pch <- integrate(function(y){ 
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            sapply(y, function(y){ 

               integrate(function(x) dnorm(x, mean=N1*high, 

sd=N1*high*(1-high) )*dnorm(y-x, mean=N2*high, sd=N2*high*(1-high)), a1, 

b1)$value*pnorm(success-y, mean = N3*high, sd = N3*high*(1-high)) 

         })}, a2, b2)$value 

 

         prh <- pah+pbh+pch-tail 

 

         pre <- pupper 

         if (pr*prh < 0){ 

            low <- pupper 

            pupper <- (high+low)/2 

            pa <- pnorm(a1, mean = N1*pupper, sd = N1*pupper*(1-pupper)) 

            f <- function(x) dnorm(x, mean = N1*pupper, sd = 

N1*pupper*(1-pupper))*pnorm(a2-x, mean = N2*pupper, sd = 

N2*pupper*(1-pupper)) 

            pb <- integrate(Vectorize(f), a1, b1)$value 

            pc <- integrate(function(y){ 

               sapply(y, function(y){ 

                  integrate(function(x) dnorm(x, mean=N1*pupper, 

sd=N1*pupper*(1-pupper) )*dnorm(y-x, mean=N2*pupper, 

sd=N2*pupper*(1-pupper)), a1, b1)$value*pnorm(success-y, mean = N3*pupper, sd 

= N3*pupper*(1-pupper)) 

            })}, a2, b2)$value 

 

            pr <- pa+pb+pc-tail 

         }else{ 

            high <- pupper 

            pupper <- (high+low)/2 

            pa <- pnorm(a1, mean = N1*pupper, sd = N1*pupper*(1-pupper)) 

            f <- function(x) dnorm(x, mean = N1*pupper, sd = 

N1*pupper*(1-pupper))*pnorm(a2-x, mean = N2*pupper, sd = 

N2*pupper*(1-pupper)) 

            pb <- integrate(Vectorize(f), a1, b1)$value 

            pc <- integrate(function(y){ 

               sapply(y, function(y){ 

                  integrate(function(x) dnorm(x, mean=N1*pupper, 

sd=N1*pupper*(1-pupper) )*dnorm(y-x, mean=N2*pupper, 
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sd=N2*pupper*(1-pupper)), a1, b1)$value*pnorm(success-y, mean = N3*pupper, sd 

= N3*pupper*(1-pupper)) 

            })}, a2, b2)$value 

 

            pr <- pa+pb+pc-tail 

         } 

         pcurr <- pupper 

         dif <- pcurr-pre 

      } 

      pupper 

   } 

} 

         

Simulation.Triple<-function(repeats, N1, N2, N3, a1, b1, a2, b2, alpha, p){ 

### Some initialization 

 

   intherange <- 0 

   pstorage <- NULL 

 

   kappa <- qnorm(1-alpha/2) 

   kappa2 <- kappa*kappa 

   lower <- 1 

   upper <- 2 

   stagecount <- 0 

   totallength <- 0 

 

### 

 

### The main simulation part 

 

   for (i in 1: repeats){ 

      print(i) 

      u1 <- runif(N1) 

      success <- 0 

      for (j in 1: N1){ 

         if (u1[j] <= p){ 

            success <- success+1 

         } 
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      } 

      pestimator <- success/N1 

      stage <- 1 

       

      if (success <= b1 && success >= a1){ 

         u2 <- runif(N2) 

         for (k in 1: N2){ 

            if (u2[k] <= p){ 

               success <- success+1 

            } 

         } 

         pestimator <- success/(N1+N2) 

         stage <- 2 

 

         if (success <= b2 && success >= a2){ 

            u3 <- runif(N3) 

            for (t in 1: N3){ 

               if (u2[t] <= p){ 

                  success <- success+1 

               } 

            } 

            pestimator <- success/(N1+N2+N3) 

            stage <- 3 

         } 

      } 

 

      pstorage[i] <- pestimator 

      if (stage == 1){ 

         stagecount <- stagecount+1 

         success_ <- success+kappa2/2 

         N_ <- N1+kappa2 

         p_ <- success_/N_ 

         s1 <- sqrt(pestimator*(1-pestimator)+kappa2/4/N1) 

         s2 <- kappa*sqrt(N1)/N_ 

         plower <- p_-s1*s2 

         pupper <- p_+s1*s2 

      } 
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      if (stage == 2){ 

         stagecount <- stagecount+1 

         plower <- boundsolver(N1, N2, a1, b1, pestimator, alpha, success, lower) 

         pupper <- boundsolver(N1, N2, a1, b1, pestimator, alpha, success, upper) 

      } 

 

      if (stage == 3){ 

         plower <- boundsolverT(N1, N2, N3, a1, b1, a2, b2, pestimator, alpha, 

success, lower) 

         pupper <- boundsolverT(N1, N2, N3, a1, b1, a2, b2, pestimator, alpha, 

success, upper) 

      } 

      if (p >= plower && p <= pupper){ 

         totallength <- totallength+pupper-plower 

         intherange <- intherange+1 

      } 

   } 

   print(totallength/intherange) 

   confidence <- intherange/repeats 

   pave <- mean(pstorage) 

   print(confidence) 

   print(pave) 

   print("Stop at 1st stage") 

   print(stagecount) 

} 

 

repeats <- 10000 

N1 <- 96 

N2 <- 96 

N3 <- 96 

a1 <- 0 

b1 <- 10 

a2 <- 0 

b2 <- 20 

alpha <- 0.01 

p <- 0.02 

 

Simulation.Triple(repeats, N1, N2, N3, a1, b1, a2, b2, alpha, p) 


