
INDIANA UNIVERSITY

SOUTH BEND

INFORMATICS PLASMA DISPLAY NEWS SERVER PROJECT AND
ANALYSIS OF ITS SOFTWARE DEVELOPMENT

A thesis submitted in partial satisfaction of the
requirements for the degree of

MASTER OF SCIENCE

in

APPLIED MATHEMATICS AND COMPUTER SCIENCE

by

Khalid R. Al-asmari

December 2006

The Thesis of Khalid R. Al-asmari
is approved:

Professor Liguo Yu, Advisor

Professor Robert Batzinger

Professor Morteza Shafii-Mousavi

Professor Dana Vrajitoru

Professor David R. Surma
Graduate Director
Applied Mathematics and Computer Science

c© copyright 2006 by Khalid R. Al-asmari.

All rights reserved.

Abstract

Informatics Plasma Display News Server Project and Analysis of Its Software

Development

by

Khalid R. Al-asmari

This project was an attempt to develop the Informatics Plasma Display News

Server (IPDNS) used to drive the plasma display operated by the Informatics at

Indiana University South Bend. The target software was designed to facilitate the

posting of top Informatics and IT news stories from the department, across the cam-

pus and around the world.

This thesis describes the implementation and testing of the IPDNS, and analyzes

the development processes used for this project.

IPDNS project development process was divided into two phases: 1) analyzing

the requirement and designing the system; 2) implementing and testing the system.

In this thesis, the various techniques used for communication and project man-

agement are compared and their relative strengths and weaknesses are analyzed in

regard to their influence and effect on the software development process.

Dedication

This thesis is dedicated in memory of my father and in honor of my mother. They

have supported me all the way since the beginning of my studies.

iv

Acknowledgments

I would like to express my gratitude to my advisor, Dr. Liguo Yu, for many insightful

conversations during the development of the ideas in this project, and for helpful

comments on the thesis.

I would also like to extend my appreciation to the review committee members:

Dr. Robert Batzinger, Dr. Morteza Shafii-Mousavi, and Dr. Dana Vrajitoru for the

assistance they provided at all levels of the research project.

I also would like to thank Dr. Robert Batzinger and Mr. Sardar for their contri-

butions as members of the project design team.

v

Contents

Abstract iii

Dedication iv

Acknowledgments v

List of Figures viii

List of Blocks ix

List of Tables x

1 Introduction 1

2 Literature Review 4
2.1 Software Development Environment 4
2.2 Issues in Distributed Software Development 6
2.3 Wiki . 10
2.4 RSS Technology . 12

3 Project Description 14
3.1 Overview and the Requirement . 14
3.2 The Development Tools . 17
3.3 The Development Process . 17

4 Project Implementation and Testing 20
4.1 Project Structure . 20
4.2 Implementation Details . 21

4.2.1 Interface Module . 21
4.2.2 Formatting Module . 22
4.2.3 Display Module . 23

vi

4.3 Testing . 24
4.3.1 Print Statement . 24
4.3.2 Perl Debugger . 24
4.3.3 Profiling . 25

5 Experience and Knowledge 37
5.1 Wikimedia . 37
5.2 Distributed Development of IPDNS 41

5.2.1 Co-editing . 42
5.2.2 Communication and Project Management 48
5.2.3 Other Tasks . 49
5.2.4 Limitations of Wiki . 52

5.3 Centralized Development . 53
5.4 Discussions . 56

6 Conclusions and Future Work 57

7 Appendices 59
7.1 Appendix A . 59

Bibliography 62

vii

List of Figures

2.1 Two views of a Wiki page . 11
2.2 A sample RSS file from the IPDNS Project Wiki 13

3.1 Plasma display . 15

4.1 Basic operation . 21
4.2 The main interface menu . 22
4.3 Project profile data before optimizing 25
4.4 Project profile data after optimizing 26

5.1 Development of Wikimedia software. 38
5.2 Developers against the growth of the software 40
5.3 Effect of experience on submission size 41
5.4 Time chart - Phase 1 . 42
5.5 The editing effort on four major documents 44
5.6 All documents - time of changes per day 45
5.7 Team activity in co-editing . 46
5.8 Authors activities in Wikimedia project Avar 47
5.9 Wiki is used to show time schedule 49
5.10 Wiki is used for project management 50
5.11 A screen shot of quick summery of tickets 51
5.12 A screen shot of meeting note . 51
5.13 Time chart - Phase 2 . 54

viii

List of Blocks

4.1 Formatting module . 30
4.2 Timed-display module . 31
4.3 Timed-display module (continued) . 32
4.4 Displaying PDF files . 33
4.5 Displaying HTML files . 34
4.6 Displaying PPT files . 35
4.7 Displaying RSS files . 36
5.1 Creates a new process . 55
5.2 Pushing processes ID . 55
5.3 Killing processes . 55

ix

List of Tables

2.1 Issues related to distributed software development 6
2.2 Open-source communication CASE tools 9
2.3 A few of the many uses for Wiki in software development 12

3.1 Softwares used in the IPDNS Project 17

4.1 The basic functions of each module 27
4.2 Subroutines called by each Module 28
4.3 All interface operations . 29

5.1 Effect of experience on the size of changes submitted 39
5.2 Summary of the coediting of four documents 43
5.3 The deadline of four documents . 44

x

Chapter 1

Introduction

In March 2005, Indiana University South Bend (IUSB) Informatics acquired a

plasma screen to display informatics and IT news to students in a hallway of Northside

Hall. Because this display was strategically located to convey information to current

and potential students of informatics. It was clear that repeating a single Power Point

(PPT) presentation would not achieve this goal. Generating content in the form of

PPT files required too much effort to gather, manipulate, and update the content. In

addition, if the content was not varied, students would ignore the monitor because

the content was considered stale.

In May 2005, a prototype news server was developed in Perl to display the news

from a few news feeds on the Internet allowing it to display top world and IT news

items as well as the departmental news. The students’ response to this system was

quite favorable and helped to develop an expectation that the monitor provides in-

1

teresting news that is worth looking at.

Despite the favorable response to the initial prototype, this news server software

required a re-write to overcome a number of limitations and make the system easier

to maintain, operate and use.

This project re-engineered the news server to improve its performance, appear-

ance, and maintainability. The update of IPDNS project was done in two phases:

1. Analyzing the requirements and designing the system. This work was

undertaken by distributed team which used Wiki as the means to communicate,

coordinate, and document the proposed project.

2. Implementing and testing the system. This work was carried out by the

author under the direction of faculty advisors who consulted in frequent face to

face meetings.

The difference in communication techniques used in this project provide some

interesting insights into the value, weaknesses, and strengths of these techniques in

particular programming environments. This thesis will discuss these findings and

explore their relevance to software development projects.

The thesis is organized as follows: Chapter 2 contains literature review. Chapter

3 describes the IPDNS project and the various techniques employed to communicate

with the various stakeholders of this project. Chapter 4 describes the project imple-

mentation and software testing. Chapter 5 summarizes the lessons learned from this

2

project. Conclusions and possible future directions of work are given in Chapter 6.

3

Chapter 2

Literature Review

2.1 Software Development Environment

Traditionally, most software projects employed centralized software development

which is generally performed in a single place. All the developers usually worked

in the same city, or even in the same building. Face to face meetings were used to

communicate ideas, coordinate efforts, and resolve issues. This form of centralized

software development has been successfully used for decades.

However, the development of information and communication technologies has

caused the IT industry to change its focus from national market to global markets [10].

This globalization of the software industry is seen as software companies not only sell

their products globally, but also begin to develop their products globally. These

trends are also seen in the rapid adoption of distributed software development where

4

software development teams work in different geographical locations. In fact, global

software development with developers located in different countries or hemispheres

has become one of the most significant trends in the software industry during the

past decade [4].

The software industry has come to expect the following benefits of distributed

software development [3, 13, 15]:

1. Improve the product quality by using top rated international IT professionals.

2. Meet specific customer needs with market customization and localized code.

3. Lower development costs by using services from countries with cheaper cost of

living.

4. Lower testing costs by contracting professional functional testing services.

5. Increase the product competitively by expanding the range of languages sup-

ported.

6. Standarize the product to allow it to be distributed and supported internation-

ally without change or modification.

As a result, many companies have turned toward globalization to produce high

quality software products without increasing labor costs. Approximately 40% of the

Fortune 500 companies in USA have engaged in outsourcing to India [5]. Further-

more, more than 50 countries are currently participating in collaborative software

5

development internationally [5].

2.2 Issues in Distributed Software Development

Because developers are located in different cities, time zones, countries, and/or

hemispheres, projects using distributed software development experience significant

issues in communication, coordination, culture differences, and knowledge manage-

ment [6, 8, 11, 12, 13], some of which are shown in Table 2.1.

Table 2.1: Issues related to distributed software development

1 Communication issues loss of development speed, lack of informal
communication.

2 Coordination issues physical distance issues, and time zone issues.
3 Cultural issues cultural conflicts, incompatible work ethics.
4 Technical issues lack of synchronization and standards.
5 Knowledge management ineffective information and knowledge-sharing

in distributed organizations mechanisms, poor documentation.

While many studies have shown that communication, coordination, and exchanges

of documents are important for the success of software projects [14], it is hard to up-

date and distribute software documents quickly enough to keep up with the concep-

tual changes that arise, especially during the design phase of software project. Due

to inefficient coordinations between globally dispersed software developers, miscom-

munication between team members has been one of the major drawbacks of Global

Software Development [6]. Of all the issues listed in Table 2.1, communication and

6

coordination appear to be most important.

The following are popular methods used for communication and coordination of

global development teams [2].

• Travel. Airplanes can bring the team members together, but it is expensive

and time consuming. Nevertheless, there is certain information that is best

conveyed face to face.

• Phone. Phone conversation is a traditional communication technique because

it is quick and instantaneous. It has the drawback that the involved developers

need to be available at the same time. Hence, it is limited by differences in

time zones and work schedules of the various team members. However, a phone

call may be more efficient than travel for conveying step-by-step instructions or

resolving an urgent issue.

• Email. Email is one of the most widely used communication tools for dis-

tributed teams. But it is effective only when all team members are committed

to reading and responding to email in a timely manner. Similar tools include

voice mail and fax machines.

• Newsgroup. Threaded discussions in a newsgroup allow multiple developers to

contribute to the body of ideas and principles that govern development projects.

These discussions are useful for future reference as the project evolves.

7

• On-line project management software (PMS). Members of a team de-

pend on each other but it is nearly impossible to achieve practical levels of

accountability without some form of monitoring. The team needs to choose

this critical software tool carefully. It is not optional. With an on-line project

management software tool it is possible to organize, plan, schedule, and track

work assignments. This formal communication method is most effective when it

is maintained by the project manager and updated daily by each team member.

• Content management software (CMS). In a distributed environment, it

is essential that all team members have access to most current copies of work-

ing documents. Web-based content management tools, such as Twiki, allow

all members to freely create and edit working documents as web content that

can be read and changed using a regular web browser. It is a good tool for

distributed team members who concurrently work together on the same docu-

ment, especially during system design specification. Software tools that comply

with WebDAV, such as Jakarta Slide, can handle more complex documents,

including PDF and Microsoft Word document.

• Web (video) conference. Visual contacts within a team help to enhance the

feeling of working of comradery among team members. Web (video) conference

tools can be used as a media for consultations, presentations, and demonstra-

tions of prototypes and deliverables.

8

Regardless of methods used, the goal is to create an environment where working in

a geographically dispersed team is nearly as effective as working in the same building.

Global software development will require people to interact with each other frequently

using different methods to overcome the challenges of working decentrally. However,

this will require the developer to acquire new skills and become familiar with new

tools designed to support software development activities that would usually take

place through the direct interaction with people.

The open source software community has been facilitated by the growing number

of software packages that address these needs. Table 2.2 is a list of different open

source CASE tools that are commonly used.

Table 2.2: Open-source communication CASE tools

Category Name Web site
Project management Achievo http://www.achievo.org

PHProjekt http://www.phprojekt.com
Double Choco Latte http://sourceforge.net/projects/dcl

Content management wiki http://twiki.org
Jakarta Slide http://jakarta.apache.org/slide
Plone http://plone.org

Web conference Ivisit http://www.ivisit.com
Vic http://www-nrg.ee.lbl.gov/vic
WebHuddle https://www.webhuddle.com

Defect tracking Bugzilla http://www.bugzilla.org
Bugzero http://www.websina.com/bugzero
Mantis http://www.mantisbt.org

Version control CVS http://www.nongnu.org/cvs
Subversion http://subversion.tigis.org

There is a clear demand for easy to use and inexpensive tools and that can sup-

9

port both communication, coordination, and documentation in distributed software

development. Wiki is a web-based technology that addresses many of these issues.

2.3 Wiki

Wiki is a software technology first implemented as WikiWikiWeb by Ward Cun-

ningham[7] to allow users to freely create and edit Web page contents using any Web

browser. It supports hyperlinks and has a simple text syntax for creating new pages

and editing existing pages on the fly. As shown in Figure 2.1, authors type their ideas

as marked plain text in a form window which others will view as formatted text. Each

and every change is recorded in history file and the contents are fully searchable within

the website as soon as revised pages are posted. These features provide a development

team with a platform for posting ideas, concepts, documentation, and source code

in a format that is easy to read and modify. Most importantly, Wiki supports open

and easy access/modification, providing a great opportunity for collaboration and

interaction.

Wiki has inherent mechanisms to protect the contents from malicious altering and

to allow user to trace the changes made to individual document. These mechanisms

include the following:

1. Page history. A record that contains the date and time of every edit, and

the user who made it. It is possible to revert the contents of a page back to a

10

Figure 2.1: Two views of a Wiki page

editor view formatted view

previous form.

2. Email notification. The site manager gets automatically notified when some-

thing has changed in a Wiki web site.

3. Code of conduct. Shared goals and responsibilities encourage contributions

that are positive and unbiased.

4. Human nature. Malicious users are outnumbered especially when all changes

are labeled with the time and author of the correction.

5. Password protection. User authentication can be implemented and used to

administer specific rights to the content.

The markup language for hypertext defined by Wiki corresponds to HTML tags.

The Wiki server transforms Wiki documents into HTML text strings that can be

11

viewed on any web browser. In addition to the structured text rules, the Wiki software

provides the user with links to a collection of tools to view, edit, and interrogate the

resulting hypertext. It is also possible to use Wiki to maintain plain ASCII text as

found in source code. Table 2.3 shows some of the applications of Wiki that would

be useful to global software development projects.

Table 2.3: A few of the many uses for Wiki in software development

• Recording a dialog between various stakeholders • To do lists
• Version control of documentation and software • Task assignments
• Meeting agendas, notes, and handouts • Document preparation
• Development of FAQ documentation • Group announcements
• Project plan and related documents • Interacting with clients
• Status reports • Contact information

The Wiki technology has continued to develop and has been ported from Perl to

other program languages. There are no less than 15 different Wiki packages available

from sourceforge.net alone, each with a wide variety of options and supporting tools.

In this project PmWiki was chosen because of its ability to alert developers of changes

to the site via RSS feeds. This facility converts the Wiki platform from a passive

repository to an active message center between developers.

2.4 RSS Technology

RSS (Really Simple Syndication) was developed to provide a method for indexing

and consolidating news information. It is a very popular family of XML protocols

12

that have been used by news services, Web blogs, and Podcasting services and the

use of RSS continues to grow. The specification for RSS is currently maintained by

the RSS Advisory Board [16]. As shown by Figure 2.2, this technology makes it

easy to obtain highlights and news from various businesses and organizations. Any

news server can easily update its content by downloading RSS files periodically from

relevant sources. The content for each news items can be parsed from the XML file

and converted into HTML which can be viewed in a web browser.

Figure 2.2: A sample RSS file from the IPDNS Project Wiki

13

Chapter 3

Project Description

3.1 Overview and the Requirement

The Informatics Plasma Display News Server (IPDNS) was a project intended to

develop a news server to drive the plasma display operated by Indiana University

South Bend Informatics (Figure 3.1). The target software was expected to facilitate

the posting of top Informatics and IT news stories from the department, across the

campus and around the world.

The requirements of the project were developed during conversation with Dr.

Ruth Schwartz, the head of IUSB Informatics. The main points are summarized

below:

1. Improve the appearance and readability of the news screens:

• Change color schemes according to news topics.

14

Figure 3.1: Plasma display

• Change the timing of displayed pages to better suit the ability of readers

to read through the body of a message.

• Support accented characters that commonly occur in news feeds such as

SlashDot and NIH.

• Include pictures that are referenced by certain news feeds.

• Remove the display of URL links from the contents of news pages.

• Support the display of long news bits so that they do not run off the screen.

2. Improve the installation and maintenance of the news service:

• Automate the installation of the software on a new system.

• Simplify the submission of PPT files and related information to the system.

• Simplify the updating of the information in the RSS feed list.

• Support for displaying PDF files in the fullscreen scrolling mode.

• Provide extensive documentations of the news service.

15

3. Improve the effectiveness of the news service:

• Shorten the number of news items shown in the main news program loop.

• Make IUSB Informatics branding more prominent with various transition

screens that identify the sponsor of this service.

• Develop a news category that spotlights IUSB Informatics activities and

programs.

4. Improve the organization of the news programming into specific categories:

• Headline news: eg., NY Times, Washington Post, BBC.

• Technology news: eg., NY Times, Washington Post, BBC, Harvard Busi-

ness Review.

• Technology highlights: eg., InfoWorld, NIH, NAS.

• IT professional news: eg., SlashDot, ACM, InfoWorld, Linux forum.

• Campus news: eg., UCET, Library, Campus webpage.

• Departmental news: eg., Informatics/CIS department announcements.

• Weather: eg., US weather bureau, Local weather site.

• Special feature: eg., tutorials, spotlight on some aspects of the department.

5. Use Microsoft Agent to broadcast special announcements.

16

3.2 The Development Tools

The developers agreed to use a common set of software tools to simplify devel-

opment. Most of these software were downloaded from the Internet and used under

open source licenses. The software tools used are listed in Table 3.1.

Table 3.1: Softwares used in the IPDNS Project

Software
Categories

Tool Description

Software Design
Tools

Graphviz A graph drawing tool.

Visual Paradigm A UML tool.
Programming
Environment

Active Perl A Systems software development
platform.

Datebase Manager SQLite A database engine.
Document Browser
and Display

Adobe Acrobat
Reader

A PDF file browser.

Firefox Web Browser A HTML browser.
Microsoft Power-
Point Viewer

A PPT file viewer.

MS Agent A MS character viewer.
Software
Documentation

PmWiki An Interactive web authoring tool.

AAA Logo A logo design tool.
Project
Management
Software

Trac A project management tool for
monitoring tasks and issues.

3.3 The Development Process

This project was developed under two phases: Phase 1 focused on the analy-

sis of requirements and software design; and Phase 2 was concerned with software

17

implementation and testing.

Phase 1 was undertaken as part of a graduate software engineering group project.

Three developers interviewed the primary client to establish the goals and parameters

of the project. Feedback and suggestions were provided by the instructor mentor. The

distributed software development model was used for this phase of the work because

the developers were unable to meet face to face regularly. All documents were drafted

and developed online. The final documentation was printed from the online material

after all the developers had an opportunity to edit and revise the text. Final approval

for each document was given in group meetings.

A Wiki site1 was established for the project and was used as a platform for com-

munication and coordination as concepts, documents and software were developed.

Draft ideas and documents were posted for review and comment. Various indices

and RSS feed services were activated on this site to make it easier to identify new

materials to be reviewed.

As this was the first time this development team had worked in a distributed

software development enviroment, it was important that other communication meth-

ods, such as email and phone, were used to overcome miscommunications that arose

when issues in the Wiki text were not being addressed. In addition, the project used

the Trac software2 to monitor and manage various mission critical tasks in a timely

manner.

1http://mypage.iusb.edu/∼ rbatzing/wiki101/pmwiki.php/P565Project /HomePage
2http://www.edgewall.com/trac/

18

Phase 2 was primarily carried out by the programmer under the direction of a

coadvisor. The main task was to implement the design and test the final software

product. Because main concerns for this phase were related to understanding the

Perl language and resolving technical issues, face to face meetings were the major

communication and coordination method used. Face to face meetings proved to be

more effective than Wiki and other communication methods at this phase, because

it was easier to discuss technical problems orally and demonstrate specific features

than to describe them in writing.

19

Chapter 4

Project Implementation and

Testing

4.1 Project Structure

As shown in Figure 4.1, the news server was designed to manage and display news

resources regardless of their format. The output of the server monitor was mirrored

to the plasma monitor using a video Y-cable connection.

The news server implemented by this project consists of three basic modules;

Interface Module, Formatting Module, and Display Module. All of these modules were

developed to run concurrently under the Windows XP environment. The functions

of each module are given in Table 4.1

20

Figure 4.1: Basic operation

4.2 Implementation Details

Perl version 5.8.8 was used to implement the three modules described above. These

modules shared a common database managed by SQLite version 3.3.5. The design and

structure of this database was based on the IPDNS Project Design Specification [1].

The final database structure is shown in Appendix A. Subroutines common to two or

more module were pooled into a source file that was included at run time(Table 4.2).

4.2.1 Interface Module

For this version of the news server, a prototype interface module was written as a

command line application for the purpose of building the databases and testing the

integrity of the database design. The basic options to the user of this menu-driven

module are shown in Figure 4.2.

21

Figure 4.2: The main interface menu

In order to quickly build the interface to the database needed by other modules,

subroutines were written using Perl Database Interface (DBI) to support the four basic

database operations: insert, delete, update, and retrieve. As the main requirement

for this module was the speed of development, no attempt was made to make this

a user-friendly application. The menus for these operations are given in Table 4.3.

Each of these operations provided a simple but robust interface to the five tables

within the database.

4.2.2 Formatting Module

Block 4.1 shows the source code for the formatting module. This module was

designed to convert RSS feeds into a sequence of HTML pages that could be easily

displayed. It was also used to update the status of each news resource to determine

whether its content could be displayed depending on whether the resource exists and

is scheduled for current display.

The extraction of content from RSS files required implementing a parser to identify

the individual news items and a translator to render the text in HTML. Because the

22

display module also interacted concurrently with the HTML files corresponding to

an RSS feed, it was critical to implement a mechanism which would prevent any

attempt by two or more modules to access these files concurrently in a variety of

read, write, or delete modes. This was achieved by forcing the Formatting Module to

use a separate working directory. The database was used to identify which working

directory contained files for display and which one could be used to develop new

material to be displayed later.

4.2.3 Display Module

The display Module was designed primarily as a time keeper. Blocks 4.2, and 4.3

show the subroutine run ipdns() which contains the main function of Display Mod-

ule. The first task of this module was to check whether the current time was within

the range of normal hours of operation. Its main responsibility was to display each

news item long enough to be read and then replace it with the next news item on the

program. The news server was given the ability to display three types of files–PDF,

HTML, and PPT, by calling the appropriate browser via the operating system. (The

corresponding lines of codes for the specific version of the subroutine display() which

show these display types can be seen in Blocks 4.4, 4.5, and 4.6, respectively.) The

display module was also designed to request the operating system to kill the process

related to the browser when the display time for a news item has expired.

In the case of RSS files this module was programmed to work directly with HTML

23

rended version of the content. The code for this can be found in Block 4.7.

4.3 Testing

The following sections describe the three methods that were used to help identify

and locate problems in the Perl code and to improve the performance of the modules.

4.3.1 Print Statement

The operation of each module was verified by adding print statements to display

the input and output of each subroutine. This debugging technique was used to

monitor the effects of code execution and identify potential problems. At times, this

was the easiest and fastest way to figure out problems and validate the algorithms

used in the program. Most of the errors and bugs were detected by this technique.

4.3.2 Perl Debugger

Each module was tested in Perl Debugging Mode which identified common errors

of programming with warning messages. This debugging technique was easy to use [9]

and was effective in highlighting a number of bugs that escaped earlier attempts to

test the software. For example, there were several incidences of variables used before

they were assigned a value. These errors were caught by this debugging technique.

24

4.3.3 Profiling

Figure 4.3: Project profile data before optimizing

Profiling studies were carried out using the Perl Profiler. Figure 4.3 shows a

sample output of a time profile for an early version of 5.6 Module.

The first line indicates that the program finished in 6.98 seconds after it was

started and the second line estimates the time the code would have taken if it was

the only process running on the machine, (0.21 seconds). For the remaining 0.56

seconds, the CPU was working on other tasks. By studying the profiling of the pro-

gram (Figure 4.3), it was determined that the program calls a number of subroutines

and it was possible to determine which subroutines were using the most time. By

restructuring the program, the speed of the program increased to the point that the

number of measured subroutine calls fell from 96 to 58 (Figure 4.4). Total time spent

by the program is reduced to 0.14 sec. These results confirmed that the news server

25

Figure 4.4: Project profile data after optimizing

was suitably optimized for normal operation where screens are displayed for 10 to 15

sec.

The meaning of each column in Figure 4.3 and 4.4 is explained below:

%Time : Percentage of time of interrupts to the corresponding routine.

#Calls : Number of calls to this routine.

sec/call : Average number of seconds per call to this routine.

Name : Name of routine.

CumulS : Time (in seconds) spent in this routine and routines called from it.

ExclSec : Time (in seconds) spent in this routine (not including those called from

it).

Csec/c : Average time (in seconds) spent in each call of this routine (including

those called from it).

26

Table 4.1: The basic functions of each module

Module Functions

Interface

• Insert records to the database.

• Delete records from the database.

• Update records to the database.

• Print out the database tables.

• Run the IPDNS Display Module.

• Exit the program.

Formatting

• Reset the list of available resources.

• Get a list of all news categories and their attributes.

• Check for current resources files for each news category.

• Update any expired RSS feeds for each news category.

• Convert updated RSS feeds into HTML files.

• Make a list of resource files to be displayed.

• Calculate and annotate the required display time for each news
resources to be displayed.

Display

• Hiberate if the current time represents an off-hour time period.

• Pick the next news item from the lists of the resources to be
displayed.

• Determine the format of the news item.

• Load and execute appropriate file viewer.

• Wait until the required display time expired.

• Remove the display process and its related window.

27

Table 4.2: Subroutines called by each Module

Module Subroutines

Interface

updaterecord()

FindActiveResources()

selectdata ()

Print_table() run_ipdns()

checktime() display()

User_Interface

Formatting

formatting()

updatedata()

FindActiveResources()

selectdate()

datestamp()

timestamp()

deletedata()

rss()

selectdata()

Next_Id()

insertdata()

FormattingModule

Display FindActiveResources()

selectdata ()

run_ipdns()

checktime() display()

DisplayModuel

28

Table 4.3: All interface operations

Operation Menu

Insert

Delete

Update

Print

29

Block 4.1 Formatting module

30

Block 4.2 Timed-display module
sub run_ipdns

{

print "Current time:", checktime(), "\n";

update base time to check file age correctly

$^T = time();

running format module

Win32::Process::Create($ProcessObj,"C:\\Perl\\bin\\perl5.8.8.exe",

"perl5.8.8 c:\\format_test.pl",

0,NORMAL_PRIORITY_CLASS,

".")|| die ErrorReport();

sub ErrorReport{print Win32::FormatMessage(Win32::GetLastError());}

to shotdown the system

Win32::Process::Create($ProcessObj,"C:\\Perl\\bin\\perl5.8.8.exe",

"perl5.8.8 c:\\configration.pl",

0,NORMAL_PRIORITY_CLASS,

".")|| die ErrorReport();

while(1)

{

go to sleep at the end of day

if ((checktime() < 800) || (checktime() > 2135))

{

print "Go to sleep", checktime(), "\n";

}

display the news during the day time

else

{ # to select the news randomly

my $range = 3;

my $minimum = 1;

my $random_number;

my $next;

to find the active resources

my @activeresources = FindActiveResources();

my $size = @activeresources;

31

Block 4.3 Timed-display module (continued)

while (@activeresources && $minimum < $size)

{

my $resource = shift(@activeresources);

generating random number

$random_number = int(rand($range)) + $minimum;

to prevent from displaying the same news next time

in the same period

$minimum = $random_number + 1;

to select data

@attributes = selectdata(’master_project_db’,’NewsResource’,

"*","ResId == ’" . $minimum ."’");

save it in an array

$newslist = $attributes[0];

call display subroutine to display the news

display("$newslist->[0]","$newslist->[1]","$newslist->[2]",

"$newslist->[3]","$newslist->[4]","$newslist->[5]",

"$newslist->[6]","$newslist->[7]","$newslist->[8]",

"$newslist->[9]");

}#End While(@acti..)

}# End Else

to shot down the system

@shutdown = selectdata(’master_project_db’,’Configuration’,"*",

"ID == 1");

$shutlist = $shutdown[0];

if ($shutlist->[2] == 1)

{ # killing any Firefox viewer still open

kill 9, @kill_pid_html;

exit 0;

}

} # End While(1)

32

Block 4.4 Displaying PDF files

if($ResourceType == 2)

{ # rand(number of pdf files)

$random = int(rand(1))+1;

create a process to display pdf file

Win32::Process::Create($ProcessObj,"C:\\Program Files\\Adobe\\

Acrobat 7.0\\Reader\\AcroRd32.exe",

"AcroRd32 $Directory\\" . $random . ".pdf",

0,NORMAL_PRIORITY_CLASS,

".")|| die ErrorReport();

killing all html running file

kill 9, @kill_pid_html;

if the display run time greater than 40 sec.

run the special announcment

if($DisplayRunTime>=40)

{# create a process to run specialannouncement.pl file

Win32::Process::Create($ProcessObj,"C:\\Perl\\bin\\perl5.8.8.exe",

"perl5.8.8 c:\\specialannouncement.pl",

0,NORMAL_PRIORITY_CLASS,

".")|| die ErrorReport();

}

wait for display

sleep($DisplayRunTime) if $debug;

killing pdf running file

$ProcessObj->Kill(0);

}#End of pdf

33

Block 4.5 Displaying HTML files

if($ResourceType == 3)

{ # rand(number of html files)

$random = int(rand(1))+1;

create a process to display html file

Win32::Process::Create($ProcessObj,"C:\\Program Files\\

Mozilla Firefox\\firefox.exe",

"firefox $Directory\\" . $random . ".htm",

0,NORMAL_PRIORITY_CLASS,

".")|| die ErrorReport();

if the display run time greater than 40 sec. run the special

announcment

if($DisplayRunTime>=40)

{# create a process to run specialannouncement.pl file

Win32::Process::Create($ProcessObj,"C:\\Perl\\bin\\perl5.8.8.exe",

"perl5.8.8 c:\\specialannouncement.pl",

0,NORMAL_PRIORITY_CLASS,

".")|| die ErrorReport();

}

wait for display

sleep($DisplayRunTime) if $debug;

find out the process ID

$pid = $ProcessObj->GetProcessID();

pushing the process ID into an array

push(@kill_pid_html,$pid);

}#End of html

34

Block 4.6 Displaying PPT files

if($ResourceType == 4)

{ # rand(number of ppt files)

$random = int(rand(2))+1;

create a process to run ppt file

Win32::Process::Create($ProcessObj,"C:\\Program Files\\

Microsoft Office\\PowerPoint Viewer\\

PPTVIEW.EXE","PPTVIEW $Directory\\"

. $random . ".ppt",0,NORMAL_PRIORITY_CLASS,

".")|| die ErrorReport();

killing all html running file

kill 9, @kill_pid_html;

if the display run time greater than 40 sec. run the

special announcment

if($DisplayRunTime>=40)

{# create a process to run specialannouncement.pl file

Win32::Process::Create($ProcessObj,"C:\\Perl\\bin\\perl5.8.8.exe",

"perl5.8.8 c:\\specialannouncement.pl",

0,NORMAL_PRIORITY_CLASS,

".")|| die ErrorReport();

}

wait for display

sleep($DisplayRunTime) if $debug;

killing ppt running file

$ProcessObj->Kill(0);

}#End of ppt

35

Block 4.7 Displaying RSS files

sub display {

local($ResId,$Dir,$Directory,$Category,$DisplayStartDate,

$DisplayExpiryDate,$DisplayRunTime,$ResourceType,

$Link,$Status) = @_;

to handel htm file from RSS folder

if($ResourceType == 1)

{ # rand(number of rss files)

$random = int(rand(2))+1;

to fetch the display run time

$Hlist = (selectdata(’master_project_db’,’RenderedHTML’,

"*","RSSFeed == ’$ResId’ AND FileNumber ==

’$random’ AND Directory ==’$Dir’"))[0];

create a process to display html file

Win32::Process::Create($ProcessObj,"C:\\Program Files\\

Mozilla Firefox\\firefox.exe",

"firefox C:\\$Dir\\$Directory\\" . $random . ".htm",

0,NORMAL_PRIORITY_CLASS,

".")|| die ErrorReport();

if the display run time greater than 40 sec. run the special

announcement

if($Hlist->[4]>=40)

{ # create a process to run specialannouncement.pl file

Win32::Process::Create($ProcessObj,"C:\\Perl\\bin\\perl5.8.8.exe",

"perl5.8.8 c:\\specialannouncement.pl",

0,NORMAL_PRIORITY_CLASS,

".")|| die ErrorReport();

}

wait for display

sleep($Hlist->[4]) if $debug;

find out the process ID

$pid = $ProcessObj->GetProcessID();

pushing the process ID into an array

push(@kill_pid_html,$pid);

}#End of RSS

36

Chapter 5

Experience and Knowledge

It is recognized that the IPDNS project was a small project and had too few

participants to be able to draw statistically significant conclusions about the efficiency

of the programming environment used. Wiki technology has become increasingly

popular with open source projects in which dozens of programmers from around the

world collaborate to develop applications. These developments are excellent sources

of information about the behavior of programmers within Wiki environments. The

section that follows will attempt to compare the experience of the IPDNS project

against that of the open source developers of Wikimedia.

5.1 Wikimedia

Wikipedia was created in 2001 by Larry Sanger and Jimmy Wales and has become

a popular multi-lingual, Web-based encyclopedia. It was launched as an English

37

language project, using a Wiki technology to collect and serve information. The

entire content of the Wikipedia is encoded and maintained as a Wiki database by

volunteers, allowing most articles to be changed by almost anyone with access to the

Wikipedia web site.

The Wiki technology used to support Wikipedia is actually a product of the Wiki-

media Group which has grown to 56 volunteer developers. The activities and sub-

missions of each and every Wikimedia developer are recorded online [18]. These data

are useful for studying the performance of volunteer developers on an international

open-source project of this size.

Figure 5.1: The line represents the number of lines of code corrected or added to the
system [18]

Figure 5.1 shows the rate of development of the Wikimedia. This software de-

velopment program has been successful as seen by the fact that the software has

38

continued to grow an increasing rate ever since its launch in 2001.

Figure 5.2 shows the effort of developers against the growth of the software. This

chart illustrates major changes to large-scale project, i.e. the growing number of

participants as the project matures. From this chart it can be seen that some pro-

grammers started early in the project but the majority have jointed the project later.

Because a dedicated Wiki was used to track and maintain the documentation, source

code and history of the project, newcomers to the project are able to orient them-

selves to the project and contribute to the software development effort fairly quickly.

Most participants are able to attain their maximum rate of Lines Of Code (LOC)

submissions within 2 months of joining the project. As Wiki technology has been

instrumental in managing the increasing complexity of the Wikimedia project and

providing support for the growing number of developers, data from their online log

files provide useful insights to the effectiveness of this environment beyond what was

seen in the IPDNS project.

Table 5.1: Effect of experience on the size of changes submitted

Total LOC per change
LOC Less than 50 Greater than 50 total

Greater than 7000 12 2 14
236 - 7000 19 9 28

Less than 236 13 1 14
Total 44 12 56

For example, the Wiki environment works best when developers submit small

incremental changes that colleagues are able to understand and build on. However,

39

Figure 5.2: Developers against the growth of the software [18].

this requires new disciplines and skills that developers need to learn. This can clearly

be seen in Figure 5.3 where the total number of LOC submitted by each programmer

has been tallied against their average LOC per change submission. The corresponding

statistics are shows in Table 5.1. These data would suggest that beginners tend to

keep changes short while they are learning the system. However, once confidence

has been built, the average programmer is more likely to submit larger patches than

either beginners or experienced contributors to the system (p < 0.99). Experienced

developers within this environment submit smaller patches more often which allows

colleagues a chance to further develop the code during breaks (allowing development

to continue on a 24 hr basis).

40

Figure 5.3: Effect of experience on submission size

●●● ●● ●●●● ●●●●●

0 100 200 300

0
50

00
0

10
00

00
15

00
00

LOC per change

Li
ne

s
of

 C
od

e

●

Experienced
Average
Beginners

5.2 Distributed Development of IPDNS

As described in Chapter 3, the IPDNS project is developed under two phases:

distributed development is used for requirement elicitation and software design, cen-

tralized development is used for implementation and testing. In Phase 1, Wiki was

used as the infrastructure for communication and coordination. In Phase 2, face-to-

face meeting is used as the major communication method.

In the initial stage, five stakeholders are involved in this project. Therefore, we

utilized distributed development, in which Wiki is the major communication and co-

41

ordination tool. The project Wiki was set up before the project started. In software

development, Wiki was used to facilitate coordination among team members; in soft-

ware maintenance, Wiki is used to monitor the operation of the software product.

The time chart for this phase is shown in Figure 5.4

Figure 5.4: Time chart - Phase 1

5.2.1 Co-editing

In the IPDNS project, the most important application of Wiki was to support

co-editing by multiple developers. Table 5.2 shows the summary of the work on four

major documents produced in this project: Project Proposal, Software Requirement

Specification (SRS), Software Design Specification (SDS), and Testing Plan. The

size of the document was measured in the number of words. The rate of change was

42

measured in number of words added, deleted or modified. The table also contains

information about the amount of time spent in the co-editing of the document and the

number of times the document was co-edited. The number of different IP addresses

used to access the Wiki is a measure of the different physical locations where the

team members were working from and reflected the amount of mobility of the group.

Table 5.2: Summary of the coediting of four documents

Size Change Change Span IP
(words) (words) (times) (days)

Proposal 2756 2811 291 19 7
SRS 1147 926 155 23 9
SDS 2542 2336 126 29 7

Test plan 1262 205 24 2 2

Table 5.2, shows that the number of changes made to Proposal, SRS, and SDS

are about same size of their final documents respectively. This illustrates the volatile

nature of co-editing. For example, in the case of the proposal, it was modified 291

times in 19 days. (This means, on average, the proposal was modified 15 times a day

by different members). Without the support of Wiki, it would have been very difficult,

even for professional developers, to use traditional sequential editing techniques, and

updated to distribute files at that frequency. Because the developers were either full

time students or full time staff, there were very limited opportunities for face to face

meetings for this project, because of other duties and commitments. Using Wiki

meant that the newest version of the documents were always available despite the

hectic and asynchronous schedules of the developers.

43

Figure 5.5: The editing effort on four major documents

Table 5.3: The deadline of four documents

Document Deadline
Proposal September 20, 2005

SRS October 13, 2005
SDS November 10, 2005

Test plan December 13, 2005

Figures 5.5 shows the co-editing effort on four documents: Proposal, SRS, SDS,

and Testing Plan. When the number of words modified on a document is plotted

against time, it is clear that the effort spent on co-editing each document increases as

deadline draws near (Table 5.3). This stimulus caused by deadlines is analogous to

the effect of site visits reported by Dr. Liguo [19]. Wiki allowed developers logging

into work from remote location simultaneously on the same document. Without the

support of Wiki, the deadline would not have been met.

Figure 5.6 illustrates the number of times a document was changed each day

44

Figure 5.6: All documents - time of changes per day

during the editing of Proposal, SRS, SDS, and Testing Plan. The frequency of changes

increased dramatically before the due date. For example, SDS was modified about 60

times on the due date, November 10, 2005. The frequent changes facilitated synergy

between the participants and the support of Wiki made it possible to be creative and

to deliver documents on time.

From our experience, Wiki not only facilitated the co-editing, but also sped the

documentation process. It reduced the time for file exchange and allowd multiple

programmers to work on the same document at the same time.

The communication was not hampered by external pressure from spam. Another

advantage we found about Wiki is the location and time of work. As long as a

developer could access the internet, he could modify the document as needed no

matter where he was and what time it was. For example, when one developer was on

45

Figure 5.7: Team activity in co-editing

a trip to New York, no one expected that he could work this project. However, with

the laptop and the internet access, he was able to contribute to this project from his

hotel. Figure 5.7 shows the co-editing activities of the three developers. We can see,

with the support of Wiki, the developers are not limited by time. They worked on

the project whenever they wanted and/or were able to. The advantage was that the

Wiki always provided the most current version of the document in a simple-to-use

interface that did not stifle creativity.

This synergy from collective round-the-clock effort was also seen by MediaWiki 4.

Figure 5.8 shows a sample of the authors activities in Project Avar. The vertical

axis indicates the activities of seven most prolific authors. It can be clearly seen that

these members work on this project at different times of day. The top composite

tracing in Figure 5.8 illustrates the transition of Wikimedia into 24×7 from a local

4http://tools.wikimedia.de/∼ avar/cvs/html/all/authors.html

46

Figure 5.8: Authors activities in Wikimedia project Avar[18]

operation service. This can be seen in the disappearance of the evening break in the

development seen in the early years of the development. The example of contributors

work hours show that development continues despite the fact that there is no shared

timezone or work day among the chief developers. With the support of Wiki, it is

easier for developers around the world to work together on time critical projects.

In addition, Wiki also helps to organize the co-editing. For example, after a team

leader created a new page and wrote the headlines, the other developers could fill in

the empty spaces to complete the document.

47

5.2.2 Communication and Project Management

In the IPDNS, Wiki was used most of the time for communication instead of a

phone and an email. Two distinct advantages of Wiki were seen: (1) Compared to

phone conversations, Wiki is not constrained by the time schedule of the developers;

(2) Compared to email, messages posted to Wiki is easy to be noticed and more

reliable. With the growing pressure of spam and increasing email traffic, developer’s

email account may be filled with junk mails or other unrelated mails. It was also pos-

sible for a developer to ignore or even accidently delete an important email regarding

the project. These communication failures were avoided by using Wiki.

Wiki is also used in peer review and indirect communication. Simple databases

were easy to implement and maintain. For example, Wiki was used to show the time

schedules of the developers. The schedule was easily updated and available to all other

team members. When there is a need for an appointment or a change of schedule,

developers could refer to the corresponding Wiki web page and update the information

as needed. All changes were instantly available to the other developers. Figure 5.9

shows the screen shot of one such schedule. At the same time the project also used

Wiki in its communication between the developers and the instructor mentor. The

final document and the presentation slides are made available through the Wiki web

site. Wiki proved to be are ideal platform for the communication of creative ideas

between the stakeholders. In addition, clients could know the progress of the project,

download demos, and interact with developers by directly accessing the Wiki web

48

Figure 5.9: Wiki is used to show time schedule

site.

In our project, Wiki was the only software used for the management of the entire

project. The project manager posted the finalized document on the web site to make

it available for all the developers. The manager could control the modification of

these documents. Beside formal project document, other project information was

also exchanged with Wiki. Figure 5.10 shows the dependency of all the tasks created

in the planning phase by the project manager. It is available in Wiki and can help

other developers to understand the project progress and the current development

stage.

5.2.3 Other Tasks

Trac[17] is a system for managing tasks within software projects. It provides

flexible web-based issue tracking services. In this project, we integrated Trac system

with wiki and used it for various proposes. Figure 5.11 shows the progress of current

49

Figure 5.10: Wiki is used for project management

tasks using Trac ticket system.

In the IPDNS project, tickets were used to report bugs, present problems, and

review project status. A ticket contains the information about the problem or the

issue, such as the reporter, the status, the type, the priority and the resolution of the

issue. Most importantly, Trac integrated with Wiki forms to create a flexible issue

management system within the Wiki enviroment where it was possible to change and

comment on specific problem tickets at any time.

50

Figure 5.11: A screen shot of quick summery of tickets

In the IPDNS project, the Trac system was used to help developers manage various

tasks such as problem assessment and project status review. For example, meeting

notes and tickets were used to review the project status. They provided summary

information about the status of the project. Figure 5.11 and 5.12 illustrate the web

interface for the ticket creator and meeting notes respectively.

Figure 5.12: A screen shot of meeting note

We also found tickets to be helpful in reviewing the project status. The graphical

51

notation made progress monitoring user friendly. Tickets can also facilitate project

review after it is finished. We could extract data about a particular task or issue. The

data can then be analyzed using integrated statistical tools. The data and knowledge

gained from the ticket system were valuable assets to improve the software process.

5.2.4 Limitations of Wiki

As with any other software tools, Wiki has its limitations.

1. Currently, Wiki does not support coediting of complex document type, such as

Word, and Excel. Because these document types are ubiquitous, development

of these documents online in a cooperative manner would be useful. While MS

SharePoint attempts to deliver some of these facilities using the MS Office Suite,

it is currently too expensive and unreliable for the average consumer.

2. Visual and audio contact is important for software development, especially when

collaboration depends on close teamwork. If Wiki could be integrated with

other web conference software, it would be more helpful for some specific tasks,

especially when relationships within developers or between developers and client

are tense or require repair.

3. While Wiki is best for software development and maintenance, it is not as suit-

able for requirement elicitation. Brain storming appears to require an element

of trust that is hard to build remotely. A face-to-face interview or an on-site

52

observation is more efficient than Wiki to obtain the software requirement from

the client, particularly when the client is not clear as to what the application

needs to do.

4. Most current implementations of Wiki do not support grammar and word-

checking which are needed to provide a flexible and robust editing environment.

With these capabilities, it would be easier to generate publishable documents

from the contents developed.

5.3 Centralized Development

In the second phase of the project, centralized development is used. Because only

two stakeholders (the programmer and the coadvisor) were involved in implementa-

tion and testing, face to face meetings became the major means for communication

and coordination.

The time chart for implementation and testing is shown in Figure 5.13. Because of

the number of technical issues that were discussed and resolved, face-to-face meetings

appeared easier than written communication. In particular, the developer and the

coadvisor worked together to debug and test the program, and the coadvisor taught

the programmer how to use certain software tools, centralized development was more

efficient then distributed development. According to our experience, centralized face-

to-face meetings are more efficient than distributed development in the following cases:

53

debugging a program, testing a program, tutoring, code implementation, and difficult

issue resolution. However, they required more careful scheduling and preplanning

than Wiki communications.

Figure 5.13: Time chart - Phase 2

Here, we show an example of using face-to-face meeting for issue resolution. The

main function of display model is to create a process that can run different types

of viewers, PPT, PDF and HTML. During the implementation, we found a problem

with HTMLs’ viewer. The procedure is shown in Block 5.1. It creates a process to run

the FireFox viewer which displays the HTML file. Every time a process was created,

it had to be tracked in order to be able to kill that process after it finished its task.

For example, when two or more HTML files are displayed in order, there was

a problem caused by the few seconds of delay between killing the first viewer and

starting the second one. This problem was found to be intrinsic to the interaction

between the Firefox viewer and the WinXP operating system. In addition, the extra

54

Block 5.1 Creates a new process

seconds of waiting would make the display inefficient.

To solve this problem, the process ID was pushed on a stack (Block 5.2), when

displaying HTML files. If the running file is PDF or PPT format, all the processes

on the stack were killed(Block 5.3).

Block 5.2 Pushing processes ID

Block 5.3 Killing processes

This tracking of HTML files opened by FireFox became a major issue that re-

quired special care during the implementation of the system. The developer and the

coadvisor attempted to use e-mail and Wiki to communicate and discuss this issue.

55

However, after several days, progress was stalled. Finally, we met face to face and

worked together and tried many different ways to solve this problem. After several

hours of debating, and searching the internet for solutions, the problem was solved.

Without that face-to-face meeting, it would have taken even longer to resolve this

problem.

5.4 Discussions

The IPDNS project used both distributed and centralized development. Both

of which have their strengths and weaknesses. In practice, the development style

should be carefully selected according to different working environment, different

levels of problem solving, and different skills of the developers. We also learned in this

project that distributed development requires active participation of all members in

the development. If some members are not prompt in responding to online messages

or document updates, the benefit of distributed development is lost. Under this

situation, centralized development is more efficient because developers are more likely

to feel the pressure and the urgency of the issues and more traditional management

pressures can be brought to bear. If participants are not disciplined, face-to-face

meetings and working in a common location would result in faster responses and

greater progress.

56

Chapter 6

Conclusions and Future Work

The Informatics Plasma Display News Server (IPDNS) was a project intended

to develop a news server to drive the plasma display operated by the Informatics

Department at Indiana University South Bend. In this thesis, the implementation and

testing of the Informatics Plasma Display News Server (IPDNS) was described. The

project was able to develop, build and test a news server which has enhancements to

the server in current use. In the future, the user interface of the IPDNS project should

be improved. This can be done by building interactive Web application using the

Common Gateway Interface (CGI) which is the predominant platform for deploying

Web applications today.

The IPDNS project also served as a means for testing the effectiveness of differ-

ent software development environments. We found both distributed and centralized

development to have their strength and weakness. In practice, an appropriate devel-

57

opment style should be carefully selected according to the demands of the development

environment, problem domain, and skill of the developers.

The Wiki environment proved useful enough to recommend that serious thought

be given to employ Wikis for use in all computer science courses which have group

projects. This would give students valuable experience training in remote software

development that would build useful shills that are increasing in importance especially

with the growing trend to employ development services of off-shore developers. Wikis

would also give instructors and mentors the ability to track the progress and the

division of effort among the members of a student work group.

As distributed software development continues to grow, new skills will be required.

Clear and concise technical communications will play an important role. In the course

of this thesis, Wiki has proven itself to be a low cost platform where the communica-

tion between remote team members can be learned and studied.

58

Chapter 7

Appendices

7.1 Appendix A

A Database Table Definition News Categories

create table NewsCategories

(

CatId INTEGER PRIMARY KEY, -- Record Identifier; autoincrementing field

Description VARCHAR(30), -- Short description of the news category

ViewSequence INTEGER, -- Viewing order of the news category: 0 = Adver-

tisement,Other Numbers = sequence

Importance INTEGER -- Relative importance of this news category

);

Special Announcements

create table SpecialAnnouncement

(

AnnouceId : INTEGER PRIMARY KEY, -- Record Identifier; autoincrementing

field

DisplayStartDate : DATESTAMP, -- Starting date of the announcement

DisplayExpiryDate : DATESTAMP, -- Last date of the announcment

MessageText : VARTEXT(240), -- Text of the scrolling message

59

MessageTitle : TEXT(60), -- Short title of the message

RelatedGraphic : TEXT(60) -- Relevent graphic for HTML version

);

News Resource

create table NewsResource

(

ResId INTEGER PRIMARY KEY, -- Record Identifier; autoincrementing field

FileName VARCHAR(60), -- Filename of the resource

Directory VARCHAR(60), -- Directory where resource can be found

Category INTEGER, -- Associated CatID from NewsCategories table

DisplayStartDate DATESTAMP, -- First date to display the news (yyyy-mm-dd)

DisplayExpiryDate DATESTAMP, -- Last day to display the news (yyyy-mm-dd)

or the word NEVER

DisplayRunTime INTEGER, -- Duration of the display on screen in seconds

ResourceType CHAR(3), -- Type of news resource: RSS, PDF, HTM, PPT

Link INTEGER, -- Record number of RSS Feed

Status INTEGER -- Status of availability: 0 = Unavailable, 1 = Available

);

RSS Feeds

create table RSSFeeds

(

RSSId INTEGER PRIMARY KEY, -- Record Identifier; autoincrementing field

Layout CHAR(8), -- Layout generator be used

HighlightColor CHAR(8), -- Highlight color in HEXDEC RGB

RefreshFrequency INTEGER, -- News feed refresh frequency: 0 = never;

> 0 represents hours

URL CHAR(80), -- Location of the news feed online

TradeMark CHAR(40), -- Filename of the trademark of the news source in

the image directory

Source CHAR(60), -- Name of the news feed

DateRefreshed DATESTAMP, -- The date of the last refresh YYYY-MM-DD

TimeRefreshed TIMESTAMP, -- The time of the last refresh HH:MM:SS

ActiveDirectory CHAR(1) -- Current temporary directory of active news items

);

HTML Rendering of RSS feeds

60

create table RenderedHTML

(

HTMLId INTEGER PRIMARY KEY, -- Record Identifier; autoincrementing field

RSSFeed INTEGER, -- Associated RSS Feed

Directory CHAR(1), -- Working directory

FileName CHAR(20), -- File name of the converted HTML file

DisplayTime INTEGER, -- Calculated display time of the HTML files

CreationDate DATESTAMP, -- Date created

CreationTime TIMESTAMP -- Time created

);

61

Bibliography

[1] Robert Batzinger, Khalid R. Al-asmari, and Serder Demir. Software design

specification. Available online http://mypage.iusb.edu/∼ rbatzing/wiki

/index.php/P565Project, Accessed 2 August 2006.

[2] Scott Berkun. The art of Project Management. Oreilly, 2005.

[3] Michael Bittner. Global product development seen as a boon for product lifecycle

management vendors. In Technology Evaluation, December 12.

[4] Erran Carmel. Global Software Teams. Prentice Hall, 1999.

[5] Erran Carmel and Ritu Agarwal. Tactical approaches for alleviating distance in

global software development. In IEEE Software, vol. 18, Issue 2, 2001.

[6] Cherry, S., Robillard, and P.N. Communication problems in global software

development: Spotlight on a new field of investigation. In The 3 rd International

Workshop on Global Software Development, ICSE04 , May 24, Edinburgh, 2004.

62

[7] Ward Cunningham. Wikiwikiweb. Available online from Protland Pattern

Repository http://c2.com/cgi/wiki, Accessed 2 August 2006.

[8] Daniela Damian. Global software development: growing opportunities, ongoing

challenges. In Software Process: Improvement and Practice. Volume 8, Issue 4,

Pages 179-182, 2003.

[9] Goldenink. Perl debug. Available online http://goldenink.com/perl/perlde

bug.html, Accessed 6 July 2006.

[10] James D. Herbsleb and Deependra Moitra. Guest editors’ introduction: Global

software development. In IEEE Software, Vol. 18, No. 2, pp. 16-20.

[11] J.D. Herbsleb and A. Mockus. An empirical study of speed and communication

in globally-distributed software development. In IEEE Transactions on Software

Engineering. Vol. 29, NO. 6. pp. 481-494, 2003.

[12] Filippo Lanubile, Daniela Damian, and Heather L. Oppenheimer. Global soft-

ware development: technical, organizational, and social challenges. In ACM

SIGSOFT Software Engineering Notes. Volume 28 , Issue 6, 2003.

[13] Microsoft. Top 10 benefits of developing globally. Available online

http://www.microsoft.com/globaldev/getWR/10benefits.mspx, Accessed 3

January 2006.

[14] The Wharton School of the University of Pennsylvania. Why

63

global software development unleashes innovation. Available online

http://knowledge.wharton.upenn.edu/index.cfm, Accessed 3 March

2006.

[15] Rafael Prikladnicki, Jorge L. N. Audy, and Roberto Evaristo. An empirical study

on global software development: Offshore insourcing of it projects. In In Proc. of

the Int’l Workshop on Global Software Development, International Conference

on Software Engineering (ICSE 2004), Edinburgh, Scotland, IEE, pp. 53–58.,

2004.

[16] RSS Advisory Board. Really simple syndication specification 2.0.1. Available

online http://www.rssboard.org, Accessed 2 August 2006.

[17] Edgewall Software. Welcome to the trac project. Available online

http://projects.edgewall.com/trac, Accessed 28 March 2006.

[18] WikiMedia. Authors. Available online http://tools.wikimedia.de/∼avar

/cvs/html/all/authors.html, Accessed 20 January 2006.

[19] Liguo Yu, Robert P. Batzinger, and Srini Ramaswamy. A comparison of the

efficiencies of code inspections in software development and maintenance. In

Proceeding of 2006 International Conference on Software Engineering Research

and Practice, Las Vegas, Nevada, June 26-29, pp. 460-465., 2006.

64

