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Abstract 
 
 The experimentation plays an important role in Science, Engineering, and 

Industry.  The experimentation is an application of treatments to experimental units, and 

then measurement of one or more responses.  It is a part of scientific method.  It requires 

observing and gathering information about how process and system works.  In an 

experiment, some input x’s transform into an output that has one or more observable 

response variables y.  Therefore, useful results and conclusions can be drawn by 

experiment.   In order to obtain an objective conclusion an experimenter needs to plan 

and design the experiment, and analyze the results. 

 There are many types of experiments used in real-world situations and problems.  

When treatments are from a continuous range of values then the true relationship between 

y and x’s might not be known.  The approximation of the response function    

y = f (x1, x2,…,xq) + e is called Response Surface Methodology.   This thesis puts 

emphasis on designing, modeling, and analyzing the Response Surface Methodology.  

The three types of Response Surface Methodology, the first-order, the second-order, and 

three- level fractional factorial, will be explained and analyzed in depth.  The thesis will 

also provide examples of application of each model by numerically and graphically using 

computer software. 
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1. Introduction 
 

 As an important subject in the statistical design of experiments, the Response 

Surface Methodology (RSM) is a collection of mathematical and statistical techniques 

useful for the modeling and analysis of problems in which a response of interest is 

influenced by several variables and the objective is to optimize this response 

(Montgomery 2005).  For example, the growth of a plant is affected by a certain amount 

of water x1 and sunshine x2.  The plant can grow under any combination of treatment x1 

and x2.  Therefore, water and sunshine can vary continuously.  When treatments are from 

a continuous range of values, then a Response Surface Methodology is useful for 

developing, improving, and optimizing the response variable.  In this case, the plant 

growth y is the response variable, and it is a function of water and sunshine. It can be 

expressed as  

    y = f (x1, x2) + e 

 The variables x1 and x2 are independent variables where the response y depends 

on them.  The dependent variable y is a function of x1, x2, and the experimental error 

term, denoted as e.  The error term e represents any measurement error on the response, 

as well as other type of variations not counted in f.  It is a statistical error that is assumed 

to distribute normally with zero mean and variance s 2.  In most RSM problems, the true 

response function f is unknown.  In order to develop a proper approximation for f, the 

experimenter usually starts with a low-order polynomial in some small region.  If the 

response can be defined by a linear function of independent variables, then the 

approximating function is a first-order model.  A first-order model with 2 independent 

variables can be expressed as 
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    εβββ +++= 22110 xxy  

If there is a curvature in the response surface, then a higher degree polynomial should be 

used.  The approximating function with 2 variables is called a second-order model:  

  εββββββ ++++++= 2112
2
2222

2
111122110 xxxxxxy  

 In general all RSM problems use either one or the mixture of the both of these 

models.  In each model, the levels of each factor are independent of the levels of other 

factors.  In order to get the most efficient result in the approximation of polynomials the 

proper experimental design must be used to collect data.  Once the data are collected, the 

Method of Least Square is used to estimate the parameters in the polynomials.  The 

response surface analysis is performed by using the fitted surface.  The response surface 

designs  are types of designs for fitting response surface.  Therefore, the objective of 

studying RSM can be accomplish by  

(1) understanding the topography of the response surface (local maximum, local 

minimum, ridge lines), and 

(2) finding the region where the optimal response occurs.  The goal is to move 

rapidly and efficiently along a path to get to a maximum or a minimum 

response so that the response is optimized. 

 

2. Literature Reviews  

 The RSM is important in designing, formulating, developing, and analyzing new 

scientific studying and products.  It is also efficient in the improvement of existing 

studies and products.  The most common applications of RSM are in Industrial, 

Biological and Clinical Science, Social Science, Food Science, and Physical and 
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Engineering Sciences.  Since RSM has an extensive application in the real-world, it is 

also important to know how and where Response Surface Methodology started in the 

history.  According to Hill and Hunter, RSM method was introduced by G.E.P. Box and 

K.B. Wilson in 1951 (Wikipedia 2006).  Box and Wilson suggested to use a first-degree 

polynomial model to approximate the response variable.  They acknowledged that this 

model is only an approximation, not accurate, but such a model is easy to estimate and 

apply, even when little is known about the process (Wikipedia 2006).  Moreover, Mead 

and Pike stated origin of RSM starts 1930s with use of Response Curves (Myers, Khuri, 

and Carter 1989). 

 According to research conducted (Myers, Khuri, and Carter 1989), the orthogonal 

design was motivated by Box and Wilson (1951) in the case of the first-order model.  For 

the second-order models, many subject-matter scientists and engineers have a working 

knowledge of the central composite designs (CCDs) and three-level designs by Box and 

Behnken (1960).  Also, the same research states that another important contribution came 

from Hartley (1959), who made an effort to create a more economical or small composite 

design.  There exist many papers in the literatures about the response surface models.  In 

contrast, 3-level fractional design has limited works. Thus, 3- level fractional design is an 

open research subject.  Fractional Factorial Experiment Design for Factor at 3-Levels 

(Connor and Zelen 1959) is a helpful resource conducting this kind of design.  Many 

three- level fractional factorial designs and more importantly their alias tables can be 

found in their study.   

 According to (Myers, Khuri, and Carter 1989), the important development of 

optimal design theory in the field of experimental design emerged following Word World 
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II.  Elfving (1952, 1955, 1959), Chernoff (1053), Kiefer (1958, 1959, 1960, 1962), and 

Kiefer and Wolfowitz were some of the various authors who published their work on 

optimality.   

 One of the important facts is whether the system contains a maximum or a 

minimum or a saddle point, which has a wide interest in industry. Therefore, RSM is 

being increasingly used in the industry.  Also, in recent years more emphasis has been 

placed by the chemical and processing field for finding regions where there is an 

improvement in response instead of finding the optimum response (Myers, Khuri, and 

Carter 1989).  In result, application and development of RSM will continue to be used in 

many areas in the future. 

 

3. Response Surface Methods and Designs 

 Response Surface Methods are designs and models for working with continuous 

treatments when finding the optima or describing the response is the goal (Oehlert 2000).  

The first goal for Response Surface Method is to find the optimum response.  When there 

is more than one response then it is important to find the compromise optimum that does 

not optimize only one response (Oehlert 2000).  When there are constraints on the design 

data, then the experimental design has to meet requirements of the constraints.  The 

second goal is to understand how the response changes in a given direction by adjusting 

the design variables.  In general, the response surface can be visualized graphically.  The 

graph is helpful to see the shape of a response surface; hills, valleys, and ridge lines.  

Hence, the function f (x1, x2) can be plotted versus the levels of x1 and x2 as shown as  

Figure 3.1 . 
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Figure 3.1  Response surface plot 

                                         y = f (x1, x2) + e 

 

In this graph, each value of x1 and x2 generates a y-value.  This three-dimensional graph 

shows the response surface from the side and it is called a response surface plot.  

Sometimes, it is less complicated to view the response surface in two-dimensional 

graphs.  The contour plots can show contour lines of x1 and x2 pairs that have the same 

response value y.  An example of contour plot is as shown in Figure 3-2. 
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Figure 3-2   Contour plot 

 

 In order to understand the surface of a response, graphs are helpful tools.  But, 

when there are more than two independent variables, graphs are difficult or almost 

impossible to use to illustrate the response surface, since it is beyond 3-dimension.  For 

this reason, response surface models are essential for analyzing the unknown function f. 

 

4. First-Order Model 

4.1 Analysis of a First-Order Response Surface 

 The relationship between the response variable y and independent variables is 

usually unknown.  In general, the low-order polynomial model is used to describe the 

response surface f.  A polynomial model is usually a sufficient approximation in a small 

region of the response surface.  Therefore, depend ing on the approximation of unknown 

function f, either first-order or second-order models are employed.   
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 Furthermore, the approximated function f is a first-order model when the response 

is a linear function of independent variables.  A first-order model with N experimental 

runs carrying out on q design variables and a single response y can be expressed as 

follows: 

 )21       .........22110 , N,,  (i xxxy iiqqiii ……=+++++= εββββ          

The response y is a function of the design variables x1, x2,…,xq, denoted as f, plus the 

experimental error.  A first-order model is a multiple-regression model and the jβ ’s are 

regression coefficients.  I will explain multiple-regression in Section 4.1.1.   

 

4.1.1 Multiple Regression Model 

 The relationship between a set of independent variables and the response y is 

determined by a mathematical model called regression model.  When there are more than 

two independent variables the regression model is called multiple-regression model.  In 

general, a multiple-regression model with q independent variable takes the form of 

),,.........2,1(

21.........

1
0

22110

qjx

, N,, i xxxy
q

j
iijj

iiqqiii

                                                  

) (       

∑
=

=++=

……=+++++=

εββ

εββββ

 

where n > q.  The parameter ßj measures the expected change in response y per unit 

increase in xi when the other independent variables are held constant. The ith observation 

and jth level of independent variable is denoted by xij.  The data structure for the multiple-

regression model is shown in Table 4.1.  
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   Table 4.1 Data for Multiple-Regression Model 
_______________________________ 

y x1 x2 … xq 

_______________________________ 
y1 x11 x12 … x1q 
y2 x21 x22 … x2q 
. . . … . 
. . . … . 
. . . … . 

yn xn1 xn2 … xnq 
_______________________________ 

 
The multiple-regression model can be written in a matrix form 

  y = Xß + e  

where 

y

( )1

2

1

nXny

y
y



















=
M

 X = 

( )nXknqnn

q

q

xxx

xxx
xxx





















L
MMMM

L
L

21

22221

11211

1

1
1

  ß = 

( )1

1

0

kXq 



















β

β
β

M
 e = 

( )1

2

1

nXn


















ε

ε

ε

M
 

 

y is an (n X 1) vector of observations, X is an (n X k) matrix of levels of independent 

variables, ß is a (k X 1) vector of regression coefficients, and e is an (n X 1) vector of 

random errors (Montgomery 2005). 

 If X is a (k X k) matrix, then the linear system y = Xß + e has a unique least 

squares solution given by yXXX ')'(ˆ 1−=β .  The estimated regression equation is 

β̂ˆ Xy = , it can also represent as ∑
=

=+=
q

j
ijji nixy

1
0 ,....,2,1     ˆˆˆ ββ . 

 

4.2 Designs for Fitting the First-Order Model 

 First-order model is used to describe the flat surfaces that may or may not be 

tilted.  This model is not suitable for analyzing maximum, minimum, and ridge lines.  
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The first-order model approximation of the function f is reasonable when f is not too 

curved in that region and the region is not too big.  First-order model is assumed to be an 

adequate approximation of true surface in a small region of the x’s (Montgomery 2005).   

At this point my motivation is to illustrate a first-order model.  The authors Dean and 

Voss give a data set for fractionation experiment that is conducted by M. Sosada (1993) 

in their case study sets.  The reason I wanted to study this real- life experiment is, it 

allows me to work on two different response variables.  This Case Study also allows me 

to demonstrate when first-order model is adequate to the given data versus when it is not.  

With this respect, it is essential to illustrate a first-order design. 

 

……  Case Study - 1     ……………………………………………………………… 

M. Sosada (1993) studied the effects of extraction time (t), solvent volume (V), ethanol 

concentration (C), and temperature (T) on the yield and phosphatidylcholine enrichment 

(PCE) of deoiled rapeseed lecithin when fractionated with ethanol.  

 Initially, a single-replicate 24 experiment was conducted, augmented by three 

center points.  The design also included the sample variance of these three observations  

120.12 =cs  of PCE and 090.02 =cs of Yield.  The results for the 16 factorial points are 

shown as the first 16 runs in Table 4.2 (Dean 1999). 
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Table 4.2   Process Data for fitting the First-Order Model 

  Natural Variables       Coded Variables          Responses 
                            

t V C T     A   B C   D     Yield PCE 
15 10 98 25     1 1 1 1     27.6 43.8 

5 5 98 25     -1 -1 1 1     16.6 27.2 
15 5 92 25     1 -1 -1 1     15.4 23.6 

5 10 92 25     -1 1 -1 1     17.4 26.2 
15 5 98 15     1 -1 1 -1     17 27.8 

5 10 98 15     -1 1 1 -1     19 30.2 
15 10 92 15     1 1 -1 -1     17.4 25.2 

5 5 92 15     -1 -1 -1 -1     12.6 18.8 
15 5 98 25     1 -1 1 1     18.6 28.8 

5 10 98 25     -1 1 1 1     22.4 36.8 
15 10 92 25     1 1 -1 1     21.4 33.4 

5 5 92 25     -1 -1 -1 1     14 21.0 
15 10 98 15     1 1 1 -1     24 38.0 

5 5 98 15     -1 -1 1 -1     15.6 23.6 
15 5 92 15     1 -1 -1 -1     13 20.2 

5 10 92 15     -1 1 -1 -1     14.4 22.6 
 

 In order to simplify the calculation, it is appropriate to use coded variables for 

describing independent variables in the (-1, 1) interval.  The independent variables are 

rescaled therefore 0 is in the middle of the center of the design, and ±1 are the distance 

from the center with direction. The variables t, V, C and T are usually called natural 

variables, because they are expressed in the natural units of measurement.  Therefore, if t, 

V, C and T denote the natural variables reaction time, volume, concentration, and 

temperature respectively then the transformation of these natural variables to coded 

variables is 

 
5
10−= t

A      
5.2

5.7−= V
B       

3
95−= Con

C             
5

20−= T
D  

The complete calculation of the coded variables is shown in Table 4.2.   I illustrated the 

geometric view of the response variables PCE and Yield in Figure 4.1 and 4.2 

respectively. 



 11 

Figure 4.1 The Geometric View of the Response Variable PCE 

 

Figure 4.2 The Geometric View of the Response Variable Yield 

 

 

 

4.2.1 Orthogonal First-Order Design 

 The experimenter needs to design a model to be efficient.  For that reason, I have 

to take estimation of variances into consideration.  The orthogonal first-order designs 

minimize the variance of the regression coefficients jβ̂ .  A first-order design is 
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orthogonal if the off-diagonal elements of the (X´X) matrix are all zero (Montgomery 

2005).  Consequently, the cross-products of the columns of the X matrix sum to zero, the    

inverse matrix of (X´X) can be obtained easily, and all of the regression coefficients are 

uncorrelated.  When the columns of the X matrix are mutually orthogonal then the levels 

of the corresponding variables are linearly independent.  I demonstrated the matrix 

calculation for Case Study-1 using excel.  The results are shown as follows: 

 

Figure 4.3 Multiple Linear Model 

  1 1 1 1 1                   
  1 -1 -1 1 1     16 0 0 0 0     
  1 1 -1 -1 1     0 16 0 0 0     
  1 -1 1 -1 1   X'X = 0 0 16 0 0     
  1 1 -1 1 -1     0 0 0 16 0     
  1 -1 1 1 -1     0 0 0 0 16     
  1 1 1 -1 -1                   

X = 1 -1 -1 -1 -1                   
  1 1 -1 1 1                   
  1 -1 1 1 1     0.0625 0 0 0 0     
  1 1 1 -1 1     0 0.0625 0 0 0     
  1 -1 -1 -1 1   (X'X)-1 

0 0 0.0625 0 0     
  1 1 1 1 -1     0 0 0 0.0625 0     
  1 -1 -1 1 -1     0 0 0 0 0.0625     
  1 1 -1 -1 -1                   
  1 -1 1 -1 -1                   

  
 
                             
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 
X' = 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 
  1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 
  1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 

           

The regression coefficients can be obtained by using the formula yXXX ')'(ˆ 1−=β . 

        43.8 
  447.2     27.2 
  34.4     23.6 
X'y =  65.2     26.2 
  65.2     27.8 
  34.4     30.2 
        25.2 
        18.8 
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      yPCE = 28.8 
  27.950     36.8 
  2.150     33.4 

β̂  = 4.075     21.0 
  4.075     38.0 
  2.150     23.6 
        20.2 
        22.6 

 

The fitted regression model for PCE is 

 D C B A y PCE 150.2075.4075.4150.2950.27ˆ ++++=      (4.1) 

 
 
The similar matrix form can be used to calculate the regression model for Yield. 
 

          27.60 
  286.000       16.60 
  22.800       15.40 
X'y =  40.400       17.40 
  35.600       17.00 
  20.800       19.00 
          17.40 
          12.60 
        yyield = 18.60 
  17.900       22.40 
  1.400       21.40 

β̂  = 2.550       14.00 
  2.200       24.00 
  1.275       15.60 
          13.00 
          14.40 

 
 

The fitted regression model for Yield is 

 D C B A yYield 275.120.255.240.190.17ˆ ++++=                                  (4.2) 
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4.3 Model Adequacy Checking 

 In this section, I am going to analyze the model adequacy.  It is important to 

examine the fitted model if the model provides an adequate approximation of the true 

response surface.  I will use normality, analysis of variance, regression analysis, and lack 

of fit test to examine both of the models.  I used Minitab to conduct the regression 

analysis and the variance of analysis of PCE and Yield.  The results are shown 

respectively in Figure 4.4 and 4.5. 

 

Figure 4.4 Analysis of Variance of Purified Lecithin - PCE 

Regression Analysis: PCE versus A, B, C, D  

 
The regression equation is 
PCE = 28.0 + 2.15 A + 4.08 B + 4.08 C + 2.15 D 
 
 
Predictor     Coef  SE Coef      T      P 
Constant   27.9500   0.5666  49.33  0.000 
A           2.1500   0.5666   3.79  0.003 
B           4.0750   0.5666   7.19  0.000 
C           4.0750   0.5666   7.19  0.000 
D           2.1500   0.5666   3.79  0.003 
 
 
S = 2.26635   R-Sq = 92.3%   R-Sq(adj) = 89.5% 
 
 
Analysis of Variance 
 
Source          DF      SS      MS      F      P 
Regression       4  679.30  169.83  33.06  0.000 
Residual Error  11   56.50    5.14 
Total           15  735.80 
 
 
 
 
Figure 4.5 Analysis of Variance of Purified Lecithin – Yield 

Regression Analysis: Yield versus A, B, C, D  
 

The regression equation is 
Yield = 17.9 + 1.40 A + 2.55 B + 2.20 C + 1.28 D 
 
 
Predictor     Coef  SE Coef      T      P 
Constant   17.9000   0.3434  52.13  0.000 
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A           1.4000   0.3434   4.08  0.002 
B           2.5500   0.3434   7.43  0.000 
C           2.2000   0.3434   6.41  0.000 
D           1.2750   0.3434   3.71  0.003 
 
 
S = 1.37345   R-Sq = 92.0%   R-Sq(adj) = 89.1% 
 
 
Analysis of Variance 
 
Source          DF       SS      MS      F      P 
Regression       4  238.850  59.713  31.65  0.000 
Residual Error  11   20.750   1.886 
Total           15  259.600 
 
 
 Even though, the Figures 4.4 and 4.5 can be produced using a variety of computer 

software, it is imperative for me to show how to calculate and analyze them.  The table of 

analysis of variance for significance of the regression is given as follows: 

 
Table 4.3 Analysis of Variance for Significance of Regression 
---------------------------------------------------------------------------------------------------- 
      Degrees of 
Variation  Sum of Squares  Freedom  Mean Square F0 
------------------------------------------------------------------------------------------------------------------------ 
 
Regression  SSR   q  MSR  MSR/MSE 
 
Error or Residuals SSE   N - q - 1  MSE 

 
Total   SST   N -1      
---------------------------------------------------------------------------------------------------- 
N is observations 
q is the number of independent variable 
 
 
The error sum of squares SSE is a measurement of the amount of variation explained by 

the regression, the smaller the SSE, the better the regression model.  The following is 

called the decomposition of the total variation. 

 SSE = SST - SSR 
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 SSE = 
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 SSE = yXyy ''ˆ' β−  
   
I demonstrated the process of the decomposition of variance for the response variables 

PCE and Yield.  The process of the decomposition of variance for PCE is shown as 

follows: 

 04.13235' =yy  
 
 54.13178''ˆ =yXβ  and 
 

  24.12499/
2

1
=



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

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∑
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SSR = 13178.54 - 12499.24      =             679.30 
SSE = 13235.04 - 13178.54      = 56.50 
SST = 13235.04- 12499.24       = 735.80 

 
 MSR = SSR / q = 679.30 / 4 = 169.825 

 MSE = SSE / N - q - 1 = 56.50 / (16-4-1) = 5.136 

Therefore, the statistic F is ==
−− E

R

E

R

MS
MS

qNSS
qSS

)1/(
/

33.063. 

 
 
The process of the decomposition of variance for Yield is shown as follows: 

 
 16.5386' =yy  
 
 41.5365''ˆ =yXβ  and 
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SSR = 5365.41 - 5126.56     =             238.85 
SSE = 5386.16 – 5365.41     = 20.75 
SST = 5386.16 – 5126.56     = 259.60 

 
 MSR = SSR / q = 238.85 / 4 = 59.712 

 MSE = SSE / N - q - 1 = 20.75 / (16-4-1) = 1.886 

Therefore, the observed statistic F is  ==
−− E

R

E

R

MS
MS

qNSS
qSS

)1/(
/

31.655.  I will apply these 

statistics to the significance test in the next section. 

 

4.3.1 The Test for Significance of Regression 

 A good estimated regression model shall exp lain the variation of the dependent 

variable in the sample.  There are certain tests of hypotheses about the model parameters 

that can help the experimenter in measuring the effectiveness of the model. The first of 

all, these tests require for the error term ei’s to be normally and independently distributed 

with mean zero and variance s 2.  To check this assumption, I graphed the normal 

probability of residuals for Case Study-1 as shown in Figure 4.6.  

 

Figure 4.6  Normal Probability Plot of the Residuals 
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 If the residuals plot approximately along a straight line, then the normality 

assumption is satisfied.  In this study, the residuals can be judged as normally distributed; 

therefore normality assumptions for both of the responses are satisfied. The error term is 

the difference between the observed value yi and the corresponding fitted value iŷ , that is, 

ei= ii yy ˆ− .  As a result of this assumption, observations yi are also normally and 

independently distributed.  Therefore, the test for the significance of the regression can be 

applied to determine if the relationship between the dependent variable y and independent 

variables x1, x2,…,xq, exists.  The proper hypotheses are 

  H0 : ß1 = ß2 = …= ßq = 0    vs 

           H0 : ßj ?  0   for at least one j. 

 The statistic F is compared to the critical Fa,q,N-q-1, if observed F-value is greater 

than the critical F, then H0 will be rejected.  Equivalently, H0 is rejected when P-value for 

the statistic F is less than significant level a.  As a result, the hypothesis for the statistical 

analysis of response variable RSE can be written as: 

 



 19 

  H0 : ß1 = ß2 = ß3 = ß4 = 0    vs 

           H1 : ßj ?  0   for at least one j. 

 

At the significant level a = 0.05, the critical value F.05,4,11 = 3.36 is < the observed             

F = 33.063.  Also, P-value from Figure 4.4 for the statistic F is less than a.  There is a 

significant statistical evidence to reject the null hypothesis.  It implies that at least one of 

the independent variables – time (A), volume (B), concentration (C), and temperature (D) 

- contributes significantly to the model.   

 I used the same method to test for the significance of the regression model for the 

response variable Yield.  Using a % 5 level of significance, the critical value F.05,4,11 = 

3.36 is < the observed F = 31.655.  Again, there is a linear relationship between the 

independent variables – time (A), volume (B), concentration (C), and temperature (D) - 

and the response variable Yield of purified lecithin.   

 How well the estimated model fits the data can be measured by the value of R2.  

The R2 lies in the interval [0,1].  When R2 is closer to the 1, the better the estimation of 

regression equation fits the sample data.  In general, the R2 measures percentage of the 

variation of y around y  that is explained by the regression equation.  However, adding a 

variable to the model always increased R2, regardless of whether or not that variable 

statistically significant.  Thus, some experimenter rather using adjusted- 2R .  When 

variables are added to the model, the adjusted- 2R  will not necessarily increase.  In actual 

fact, if unnecessary variables are added, the value of adjusted - 2R will often decrease.  

For instance, consider the regression models in Case Study-1.  I calculated the R2 and the 

adjusted- 2R  for both of the models.  I showed these results earlier in Figure 4.4 and 4.5. 
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Both of R2and 2R are statistically significant for the response variables RSE and Yield.  It 

suggests that the estimated regression equations for the Case Study-1 fit the data well.  At 

this point, there is no sufficient reason to reject the initial regression Equations 4.1 and 

4.2 for PCE  and Yield of purified lecithin respectively.  

 

4.3.2 The Test for Individual Regression Coefficients 

 In order to determine whether given variables should be included or discluded 

from the model, I need to test hypotheses for the individual regression coefficients.  The 

simple analysis starts with a main effects plot.  A main effects plot is a plot of the means 

of the response variable for each level of a factor.  It allows an experimenter to obtain a 

general idea of which main effects may be important.  The main effect is calculated by 

subtracting the overall mean for the factor from the mean for each level. The Figure 4.7 

and 4.8 show the locations of the main effects for PCE and Yield respectively. 
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Figure 4.7 Main Effects Plot of Purified Lecithin Phosphatidylcholine Enrichment 
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Figure 4.8 Main Effects Plot of Purified Lecithin Yield 
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 My analysis indicates that the factors A, B, C, and D increase when they move 

from the low level to the high level of purified lecithin Phosphatidylcholine Enrichment 

(PCE) and Yield.  Each level of the factors affects the response differently. Each factor at 

their high level results in higher mean responses comparing to that at the low level.  

Alternatively, the factors B and C appear to have a greater effect on the responses, with a 

steeply slope.  If the slope is close to zero, the magnitude of the main effect would be 

small.  The main effect plots are helpful in visualizing which factors affect the response 

the most, but in order to determine the significance of the factors, I have to conduct an 

appropriate statistical test, a t-test, to identify the significance of the main factors.  

  In general, an F-test is used to test for more than one coefficient or, joint 

hypotheses. When the hypotheses test is particular to one coefficient at a time, then t-test 

is more common.  To examine the significant contribution of the independent variables to 

the phosphatidylcholine enrichment (PCE), I did the following calculations for the 

following hypotheses: 

 H0: ßtime     = 0   H1: ßtime     ? 0     

 H0: ßvolume = 0    H1: ßvolume  ? 0 

 H0: ßconc.   = 0    H1: ßconc.    ? 0     

 H0: ßtemp    = 0    H1: ßtemp     ? 0 

The test for this hypothesis is called t-statistic, expressed as 

jj

j

W
t

20
ˆ

ˆ

σ

β
=  where Wjj is the diagonal elements of ( ) 1' −XX corresponding to jβ̂ .  The 

denominator jjW2σ̂  is called the standard error of the regression coefficient jβ̂ ,  
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because =)ˆ( jse β jjW2σ̂ .  The values of )ˆ( jse β  are also found in Figure 4.2. Recall 

from earlier calculation that jβ̂  =
















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
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and 14.5ˆ 2 =σ .  Consequently, t-statistics are computed below: 

  

 778.3
0625.*14.5
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ˆ

ˆ

11
2

1 ===
W

t A
σ

β
,    19.7

0625.*14.5
075.4

ˆ
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22
2

2 ===
W

tB
σ

β
, 

 19.7=Ct , and 778.3=Dt . 

 

These t-statistic values are compared with the critical t-values.  The null hypothesis H0 : 

ßj = 0 is rejected if the observed |t0| > critical value
1,

2
−−qN

tα . The level of significance is at 

5 percent, that is, a = .05.  Noting that 

 

 |tA| = |tD| = 3.778 >  =11,025.t 2.201 and 

 |tB| = |tC| = 7.19   >   =11,025.t 2.201, 

 

the null hypotheses H0 : ßtime = 0, H0 : ßvolume = 0, H0 : ßconc = 0, and   

H0: ßtemp = 0 are rejected.  I concluded that the independent variables: time (A), volume 

(B), concentration (C), and temperature (D), all contribute significantly to the response 

variable phosphatidylcholine enrichment (PCE). 



 24 

 Furthermore, I used a similar test for the hypothesis on the individual regression 

coefficients for the yield of purified lecithin.  Using the coefficients jβ̂ =


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

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









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200.2
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900.17

 and 

886.1ˆ 2 =σ , the t-statistics were computed as follows: 
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Note that 

 |tA| = 4.08 >   =11,025.t 2.201,  

 |tB| = 7.43 >   =11,025.t 2.201, 

 |tC| = 6.41 >   =11,025.t 2.201, and  

 |tD| = 3.71 >   =11,025.t 2.201. 

All t-statistics are larger than the critical t-value.  I concluded that the independent 

variables, the time (A), the volume (B), the concentration (C), and the temperature (D), all 

contribute significantly to the model. 

 

4.3.3 Center Points in a 2q Design 

 In addition to the orthogonal design, the standard first-order design is a 2q 

factorial with a center point.  These designs consist of factorial points nf and the center 

points nc.  The center points are observations collected at the center points xi = 0 (i = 

1,2,…, q).  The replicated points at the center points can be used to calculate the pure 
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error.  Also, the contrast between the mean of the center points and the mean of the 

factorial points provides a test for the lack of fit in a 2q design.  The lack of fit of a first-

order model occurs when the model does not adequately represent the mean response as a 

function of the factor level (Angela 1999).  The analysis of variance of generic lack of fit 

test for the first order model is given in Table 4.4. 

 

Table 4.4 Analysis of Variance of Lack of Fit 
---------------------------------------------------------------------------------------------------- 
      Degrees of 
Variation  Sum of Squares  Freedom  Mean Square F0 
------------------------------------------------------------------------------------------------------------------------ 
 
Residuals   SSE   N - q - 1  MSE   
 
Lack of fit  SSLOF   nd - q- 1  MSLOF          MSLOF/MSPE 
 
Pure Error  SSPE   N - nd  MSPE  
 

---------------------------------------------------------------------------------------------------- 
N observations 
q number of independent variables 
nd distinct design points 
 

The residual sum of squares SSE can be partitioned into two components, 

  SSE = SSPE + SSLOF 

where SSPE is the sum of squares due to the pure error and SSLOF is sum of squares due to 

the lack of fit.  The replicates at the center can be used to calculate the mean squares for 

the pure error, where cy is the average of the cn runs at the center point 

  MSPE = 1/)(
1 1

2 −−=
− ∑

=
c

cn

i
ci

c

PE nyycenter
n
SS . 

The mean squares for lack of fit is  

  MSLOF = 
1−− qn

SS

d

LOF  
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then the ratio 

  
PE

LOF

MS
MS

F =0  

is used to test the null hypothesis of the lack of fit. 

 Recall the Case Study-1, the authors Dean and Voss stated in their case study sets 

that design included nc = 3 center points observation of each response variables PCE and 

Yield.  Since, these additional observations are not included in the data set; I can use the 

given sample variance values of each three observations to test for lack of fit. 

 

For testing the lack of fit for the response variable Yield of purified lecithin, the following 

computations are carried out: 

N = nf + nc = 16 + 3 = 19,  

nd = 16 + (1 center point) = 17, 

dfLOF = nd - q- 1 = 12, 

dfPE = N - nd = 2, and 

2
cs  = .09. 

Since the factorial points included no replication, 

1/)(
1

22 −−= ∑
=

c

cn

i
cic nyys  will imply that MSPE = 2

cs  = .09. 

Therefore, ( )dPEPE nNMSSS −= *  = .18, 

SSE(19  runs) = SSE(16  runs)  + ( )1*2 −cc ns  = 20.750 + .18 = 20.93, 

SSE = SSPE + SSLOF   implies SSLOF  = 20.750, and 

MSLOF = 
1−− qn

SS

d

LOF = 1.729. 
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The test statistic for the lack of fit 
PE

LOF

MS
MS

F =0  = 19.213 is compared to the critical 

dnNqdnF −−− ,1,α value.   

 The comparison shows that 0F = 19.213 ˜  2,12,05.F = 19.41.  Since the observed 

statistic F0 value is slightly less than the critical F-value, I cannot conclude the 

significance of regression model by this test at significance level a = 0 .05. The analysis 

of variance for Yield is given in Table 4.5.  Therefore, I will conduct a more appropriate 

model, such as a second-order model, and I will study in Section 5.2.  However, the 

analysis of the response variable Yield will still be continued in a single replicate of the 2q 

design in Section 4.4.   

 
 
Table 4.5 Analysis of Variance of Lack of Fit for Yield 
---------------------------------------------------------------------------------------------------- 
      Degrees of 
Variation  Sum of Squares  Freedom  Mean Square F0 
------------------------------------------------------------------------------------------------------------------------ 
 
Residuals   20.93   14  1.495   
 
Lack of fit  20.75   12  1.729  19.213 
 
Pure Error     .18    2   .09 
 

---------------------------------------------------------------------------------------------------- 
 

 I carried out same type of calculation on the data set for PCE using the sample 

variance 2
cs  = 1.120.  My result of the analysis of variance is given in Table 4.6. 
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Table 4.6 Analysis of Variance of Lack of Fit for RCE 
---------------------------------------------------------------------------------------------------- 
      Degrees of 
Variation  Sum of Squares  Freedom  Mean Square F0 
------------------------------------------------------------------------------------------------------------------------ 
 
Residuals   58.74   14  4.196 
 
Lack of fit  56.50   12  4.708  4.204 
 
Pure Error  2.24    2  1.12 
 

---------------------------------------------------------------------------------------------------- 
 

The test statistic 0F = 4.204 is smaller than the critical 2,12,05.F = 19.41 value. There is no 

significant evidence of lack of fit at a = 0.05.  Therefore, I can conclude that the true 

response surface is explained by the linear model.   

 I can also use contour plot to visualize the response surface.  These plots show 

how the response variable relates to the two factors at a time.  Since there are four 

factors; each time two factors will be hold at a constant level when plotting the other two 

factors.  The response surface changes when the holding levels are changed.  Therefore, it 

is important to select the holding levels for the other factors.  In general, the optimum 

levels for factorial model with no curvature will be at one of the corners.  The analysis of 

the main effects plot in Figure 4.7 indicates that the best optimum setting includes Time, 

Volume, Concentration, and Temperature, all at their high levels.  These settings can be 

used as the hold values for each factors when it was not included in the plot (Minitab).  

The Figure 4.9 shows the contour plots of PCE. 
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Figure 4.9 the Contour Plots of PCE 

 

Since the response surface is a plane, the contour plots are parallel straight lines.  The 

analysis of the contour plots is as follows: 

 B*A:  This plot indicates that how variables, Volume and Time, are related to the 

PCE of deoiled rapeseed lecithin while the other factors, Concentration and Temperature, 

are held constant at high level 1.  The response is at its highest (greater than 40) at the 

darkest region of the graph (upper right corner). 

 C * A:  This plot indicates that how variables, Concentration and Time, are 

related to the PCE of deoiled rapeseed lecithin while the other factors, Volume and 

Temperature, are held constant at high level 1.  The response is at its highest (greater than 

40) at the darkest region of the graph (upper right corner). 

 D * A: This plot indicates that how variables, Temperature and Time, are related 

to the PCE of deoiled rapeseed lecithin while the other factors, Volume and 
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Concentration, are held constant at high level 1.  The response is at its highest (greater 

than 40) at the darkest region of the graph (upper right corner). 

 C * B: This plot indicates that how variables, Concentration and Volume, are 

related to the PCE of deoiled rapeseed lecithin while the other factors, Time and 

Temperature, are held constant at high level 1.  The response is at its highest (greater than 

40) at the darkest region of the graph (upper right corner). 

 D * B: This plot indicates that how variables, Temperature and Volume, are 

related to the PCE of deoiled rapeseed lecithin while the other factors, Time and 

Concentration, are held constant at high level 1.  The response is at its highest (greater 

than 40) at the darkest region of the graph (upper right corner). 

 D * C: This plot indicates that how variables, Temperature and Concentration, are 

related to the PCE of deoiled rapeseed lecithin while the other factors, Time and Volume, 

are held constant at high level 1.  The response is at its highest (greater than 40) at the 

darkest region of the graph (upper right corner). 

 In order to maximize the phosphatidylcholine enrichment (PCE) of deoiled 

rapeseed lecithin when fractionated with ethanol, I can choose high level settings for 

Extraction Time, Solvent Volume, Ethanol Concentration, and Temperature.  The final 

estimated regression model using the coded variables is expressed as follows: 

 

 D C B A y PCE 150.2075.4075.4150.2950.27ˆ ++++=  

 

 I found the maximum predicted response is =PCEŷ 40.40, achieved when all four 

factors are at their high level (1). 
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4.4 A Single Replicate of the 2q Design 

 In general, the 2q design can be large; therefore availability of resources allows an 

experimenter to run a single replicate of a design. The Case Study-1 is a single replicate 

24 design.  An earlier analysis concluded that there may be a possibility that the 

regression model for the Yield is not sufficiently explained by the main effects.  

Therefore, I need to study the impact of the interactions.  Recall that the data did not 

include the 3 center points, thus I can continue to analyze the data by using a single 

replicate of the 24 design.  The design matrix of main effects and their interactions are 

shown in Table 4.7. 

 

Table 4.7 The Main Effects and Interactions for 24 Design 

A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD Yield 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 27.6 

-1 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 1 16.6 

1 -1 -1 1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 15.4 

-1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 17.4 

1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 1 1 17 

-1 1 1 -1 -1 -1 1 1 -1 -1 -1 1 1 -1 1 19 

1 1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 1 1 1 17.4 

-1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 1 12.6 

1 -1 1 1 -1 1 1 -1 -1 1 -1 -1 1 -1 -1 18.6 

-1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 1 -1 22.4 

1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 -1 -1 21.4 

-1 -1 -1 1 1 1 -1 1 -1 -1 -1 1 1 1 -1 14 

1 1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1 -1 24 

-1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 15.6 

1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 13 

-1 1 -1 -1 -1 1 1 -1 -1 1 1 1 -1 1 -1 14.4 

 

 The problem of running an analysis of this saturated model is that I cannot get an 

estimate of error.  Here is the reason.  There are 15 degrees of freedom in such 

experiment, with 4 degrees of freedom for main effects, 6 degrees of freedom for 2-factor 

interactions, 4 degrees of freedom for 3-factor interactions, and 1 degree of freedom for 
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4-factor interaction.  Consequently, there are no degrees of freedom left to estimate the 

error variance.  Therefore, one way to analyze the unreplicated factorial design is to 

examine the normality of the estimated effects.  The experimenter can use a normal 

effects plot to determine the statistical significance of both main and interaction effects.  

The effects that are not significant will fall along a line, on the other hand, the significant 

effects will stray farther from the line.  The Figure 4.10 illustrates the normal plot of 

these effects. 

 

The Figure 4.10 The Normal Plot of Effects  
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 My analysis is concluded that the main effects A, B, C, and D and the interactions 

AB, BC, and BD are significant. Since they lie on right hand side of the line, their 

contribution has a positive effect on the model.  The rest of the effects lie along the line 

are negligible.  The factor Solvent Volume (B) appears to have a largest effect because it 
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lies furthest from the line.  The lower term interaction plot as shown in Figure 4.11 can 

also be a helpful resource in visualizing interactions. 

 

Figure 4.11 The Plot of Low-Order Interactions 
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 This interaction plot confirms the significance of AB, BC, and BD interactions as 

stated earlier.  Interaction occurs when one factor does not produce the same effect on the 

response at different levels of another factor. Therefore, if the lines of two factors are 

parallel, there is no interaction.  On the contrary, when the lines are far from being 

parallel, the two factors are interacting.  In each case of AB, BC, and BD interactions, the 

response yield increases when the line moves from the low level (-1) to high level (1).  

For example, the factor A effect is small when the factor B is at the low level and large 
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when the factor B is at the high level.  It appears that the best result is obtained when each 

of the factors: A, B, C, and D is at their high level.   

 Another strategy is to analyze the significance of data using the sparsity of effects 

principle.  This principle assumes that most systems are dominated by some main effects 

and low-order interactions, and most high-order interactions are negligible (Myers 1995).  

I assumed that the highest interaction component ABCD is negligible and its mean square 

can be used to obtain an error term.  Table 4.8 gives the analysis of the factorial design in 

this respect. 

 

Figure 4.12 Analysis of Variance of the 24 Factorial Design for Purified Lecithin – Yield 

 
Regression Analysis: Yield versus A, B, ...  
 
The regression equation is 
Yield = 17.9 + 1.40 A + 2.55 B + 2.20 C + 1.28 D + 0.750 AB + 0.300 AC 
        + 0.175 AD + 0.600 BC + 0.475 BD - 0.0750 CD + 0.100 ABC - 0.0250 ABD 
        - 0.0750 ACD + 0.0750 BCD 
 
 
Predictor      Coef  SE Coef       T      P 
Constant    17.9000   0.0250  716.00  0.001 
A           1.40000  0.02500   56.00  0.011 
B           2.55000  0.02500  102.00  0.006 
C           2.20000  0.02500   88.00  0.007 
D           1.27500  0.02500   51.00  0.012 
AB          0.75000  0.02500   30.00  0.021 
AC          0.30000  0.02500   12.00  0.053 
AD          0.17500  0.02500    7.00  0.090 
BC          0.60000  0.02500   24.00  0.027 
BD          0.47500  0.02500   19.00  0.033 
CD         -0.07500  0.02500   -3.00  0.205 
ABC         0.10000  0.02500    4.00  0.156 
ABD        -0.02500  0.02500   -1.00  0.500 
ACD        -0.07500  0.02500   -3.00  0.205 
BCD         0.07500  0.02500    3.00  0.205 
 
 
S = 0.1   R-Sq = 100.0%   R-Sq(adj) = 99.9% 
 
 
 
Analysis of Variance for Yield (coded units) 
 
Source              DF   Seq SS   Adj SS   Adj MS        F      P 
Main Effects         4  238.850  238.850  59.7125  5971.25  0.010 
2-Way Interactions   6   20.390   20.390   3.3983   339.83  0.041 
3-Way Interactions   4    0.350    0.350   0.0875     8.75  0.248 
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Residual Error       1    0.010    0.010   0.0100 
Total               15  259.600 
 

 As it appeared on the normal plot of effects, 2- factor interactions are significant at 

the level of % 5 significance.  Meanwhile, the 3-factor interactions do not appear to 

contribute significantly to the model.  The t-tests reveal that the main effects of A, B, C, 

and D and the interactions AB, BC, and BD are significant.  My result confirms previous 

graphical analysis of normal plot effects and interactions plot.  In order to get the best 

response surface result for yield of purified lecithin, I can consider the main effects at 

their high level.  The following estimated equation is my final model for the single 

replicated 24 factorial design for the response variable Yield. 

 

BD BC AB D C B A yYield 475.060.075.0275.12.255.240.190.17ˆ +++++++=  

 

Therefore, predicted Yield of deoiled rapeseed lecithin when fractionated by ethanol is  

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

15.27ˆ

11475.01160.01175.01275.112.2155.2140.190.17ˆ

=

+++++++=

Yield

Yield

y

          y

 

where all four factors; Extraction Time, Solvent Volume, Ethanol Concentration, and 

Temperature are at high level (+1) . 
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4.5 Conclusion of the first-order model 

 A first-order model uses low-order polynomial terms to describe some part of the 

response surface.  This model is appropriate for describing a flat surface with or without 

tilted surfaces.  Usually a first-order model fits the data by least squares.  Once the 

estimated equation is obtained, an experimenter can examine the normal plot, the main 

effects, the contour plot, and ANOVA statistics (F-test, t-test, R2, the adjusted R2, and 

lack of fit) to determine adequacy of the fitted model.  Lack of fit of the first-order model 

happens when the response surface is not a plane.  If there is a significant lack of fit of 

the first-order model, then a more highly structured model, such as second-order model, 

may be studied in order to locate the optimum. 
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5. Second-Order Model 
 
5.1 Analysis of a Second-Order Response Surface 
 
 When there is a curvature in the response surface the first-order model is 

insufficient.  A second-order model is useful in approximating a portion of the true 

response surface with parabolic curvature.  The second-order model includes all the terms 

in the first-order model, plus all quadratic terms like 2
111 ixβ  and all cross product terms 

like ji xx 3113β .  It is usually expressed as 
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where ( )'
21 ,...,, iqiii xxxx = , ( )'

21 ,...,, qββββ = . 

 The second-order model is flexible, because it can take a variety of functional 

forms and approximates the response surface locally.  Therefore, this model is usually a 

good estimation of the true response surface.  Also, as I described in Section 4.1.1, the 

method of least squares can be applied to estimate the coefficients jβ  in a second-order 

model.  

 

5.2 Designs for Fitting Second-Order Model 
 
 There are many designs available for fitting a second-order model.  The most 

popular one is the central composite design (CCD).  This design was introduced by Box 

and Wilson.  It consists of factorial point s (from a 2q design and 2q-k fractional factorial 

design), central points, and axial points. The following is the representation of 2q axial 

points: 
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   x1     x2 … xq  

             -a  0 … 0 
    a  0 … 0 
    0        -a … 0 
    0  a … 0 
     .   . … . 
     .   . … . 
     .   . … . 
     0   0 …       -a 
     0   0 …  a  
    

CCD was often developed through a sequential experimentation.  When a first-order 

model shows an evidence of lack of fit, axial points can be added to the quadratic terms 

with more center points to develop CCD.  The number of center points nc at the origin 

and the distance a of the axial runs from the design center are two parameters in the CCD 

design. The center runs contain information about the curvature of the surface, if the 

curvature is significant, the additional axial points allow for the experimenter to obtain an 

efficient estimation of the quadratic terms. The Figure 5.1 illustrates the graphical view 

of a central composite design for q = 2 factors. 

Figure 5.1 Central Composite Design for q = 2 
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 There are couples of ways of choosing a and nc.  First, CCD can run in 

incomplete blocks.  A block is a set of relatively homogeneous experimental conditions 

so that an experimenter divides the observations into groups that are run in each block.  

An incomplete block design may be conducted when all treatment combinations cannot 

be run in each block.   In order to protect the shape of the response surface, the block 

effects need to be orthogonal to treatment effects.  This can be done by choosing the 

correct a and nc in factorial and axial blocks.   

 Also, a and nc can be chosen so that the CCD is not blocked.  If the precision of 

the estimated response surface at some point x depends only on the distance from x to the 

origin, not on the direction, then the design is said to be rotatable (Oehlert 2000). When 

the rotatable design is rotated about the center, the variance of ŷ will remain same.  Since 

the reason for using response surface analysis is to located unknown optimization, it 

makes sense to use a rotatable design that provides equal precision of estimation of the 

surface in all directions.  The choice of a will make the CCD design rotatable by using 

either 4/2q=α  for the full factorial or 4/)(2 kq−=α for a fractional factorial.   

 

5.2.1 Orthogonal Central Composite Design 

 Occasionally, a central composite design may contain only one observation at 

each of the nf factorial points and 2q axial points, and with nc observations at the center. 

This design is known as Khuri and Cornell orthogonal if 

   ( ) nnn ff =+
222α  
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where n is the total number of observations and n = nf + 2q + nc (Dean 1999).  Orthogonal 

central composite design with only one observation is achieved by appropriate choice of 

a and nc.  Consequently, the value of a would be 

   

2/1

2 











 −
=

ff nnn
α  

Recall from the Case Study-1, the test statistic for lack of fit indicated that the initial 

model for fitting the response variable Yield was not adequate.  Therefore, Sosada chose 

to augment the 16 factorial points of the first-order design into a 25-run central composite 

design (Dean 1999).  The data set are as follows:  

 

Table 5.1 Data for Yield of Deoiled Rapeseed Lecithin when Fractionated with Ethonal 

A B C D Yield 
1 1 1 1 27.6 

-1 -1 1 1 16.6 
1 -1 -1 1 15.4 

-1 1 -1 1 17.4 
1 -1 1 -1 17 

-1 1 1 -1 19 
1 1 -1 -1 17.4 

-1 -1 -1 -1 12.6 
1 -1 1 1 18.6 

-1 1 1 1 22.4 
1 1 -1 1 21.4 

-1 -1 -1 1 14 
1 1 1 -1 24 

-1 -1 1 -1 15.6 
1 -1 -1 -1 13 

-1 1 -1 -1 14 
0 0 0 0 22.6 

1.414 0 0 0 23.4 
-1.414 0 0 0 20.6 

0 1.414 0 0 22.6 
0 -1.414 0 0 13.4 
0 0 1.414 0 20.6 
0 0 -1.414 0 15.6 
0 0 0 1.414 21 
0 0 0 -1.414 17.6 
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This design contains 25 numbers of observations, and 8 axial points with 1 center point.  

In order to determine if this design orthogonal central composite design, I applied the test 

by Khuri and Cornell.   

n  = 25 
nc =  1 
nf  = 16 
2q = 8 
a  = 1.414 

 

414.1
2

1625*16
2

2/12/1

=








 −
=












 −
=

ff nnn
α  

since, ( ) nnn ff =+
222α  => ( ) 25*16414.1*216

22 =+   400400 =  

this design is orthogonal.   

  
 The analysis of a second-order model is usually done by computer software.  The 

analysis of variance for fitting the data to the second-order and contour plots will help 

characterize the response surface.  In this section, my goal is to fit the second-order 

model using central composite design.  I will investigate the adequacy of the second-

order model for Yield of deoiled rapeseed lecithin when fractionated with ethanol.  The 

ANOVA and regression analysis for the response variable Yield are shown in Figure 5.2.  
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Figure 5.2 Analysis of Purified Lecithin Yield  

Central Composite Design  
 
Factors:       4     Replicates:     1 
Base runs:    25     Total runs:    25 
Base blocks:   1     Total blocks:   1 
 
Two-level factorial: Full factorial 
 
Cube points:             16 
Center points in cube:    1 
Axial points:             8 
Center points in axial:   0 
 
Alpha: 1.414 
 
Response Surface Regression: Yield versus A, B, C, D  
 
The analysis was done using coded units. 
 
Estimated Regression Coefficients for Yield 
 
Term         Coef  SE Coef       T      P 
Constant  21.4480   0.4313  49.732  0.000 
A          1.3180   0.1607   8.200  0.000 
B          2.6905   0.1607  16.740  0.000 
C          2.1136   0.1607  13.150  0.000 
D          1.2604   0.1607   7.842  0.000 
A*A        0.4200   0.2541   1.653  0.129 
B*B       -1.5800   0.2541  -6.217  0.000 
C*C       -1.5300   0.2541  -6.021  0.000 
D*D       -0.9300   0.2541  -3.660  0.004 
A*B        0.7500   0.1797   4.174  0.002 
A*C        0.3000   0.1797   1.669  0.126 
A*D        0.1750   0.1797   0.974  0.353 
B*C        0.6000   0.1797   3.339  0.008 
B*D        0.4750   0.1797   2.643  0.025 
C*D       -0.0750   0.1797  -0.417  0.685 
 
S = 0.7188   R-Sq = 98.6%   R-Sq(adj) = 96.7% 
 
 
Analysis of Variance for Yield 
 
Source          DF   Seq SS   Adj SS   Adj MS       F      P 
Regression      14  368.056  368.056  26.2897   50.88  0.000 
  Linear         4  300.637  300.637  75.1593  145.47  0.000 
  Square         4   47.029   47.029  11.7572   22.76  0.000 
  Interaction    6   20.390   20.390   3.3983    6.58  0.005 
Residual Error  10    5.167    5.167   0.5167 
Total           24  373.222 
 
 
The regression equation is 
Yield = 21.4 + 1.32 A + 2.69 B + 2.11 C + 1.26 D + 0.420 A^2 - 1.58 B^2 
        - 1.53 C^2 - 0.930 D^2 + 0.750 AB + 0.300 AC + 0.175 AD + 0.600 BC 
        + 0.475 BD - 0.075 CD 
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 The Minitab computes the linear, quadratic, and interactions terms in the model.  

My analysis of variance indicates that there are significant interactions between the 

factors.  The small p-values for linear and square terms also point out that their 

contribution is significant to the model.  Since, there are no replicated center points; the 

software cannot obtain a lack-of- fit.  But, small p-values for the interactions and the 

squared terms suggest there is curvature in the response surface.   

 Moreover, the main effects can be referred to as significant at an individual .05 

significant level.  The quadratic terms, B2, C2, and D2 and interaction terms AB, BC, and 

BD, significantly contribute to the response model at a = 0.05.  As a result, my final 

model for the response variable Yield is concluded as follows: 

 

BDBCAB

DCBDCBAyYield

48.060.075.0

93.053.158.126.111.269.232.1448.21ˆ 222

++

−−−++++=

            
 

 

 Since the response surface is explained by the second-order model, it is necessary 

to analyze the optimum setting. The graphical visualization is very helpful in 

understanding the second-order response surface.  Specifically, contour plots can help 

characterize the shape of the surface and locate the optimum response approximately.  I 

graphed the contour plot of purified lecithin Yield as is shown in Figure 5.3. 
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Figure 5.3 Contour Plot of Purified Lecithin Yield 
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Since the response surface is not a plane, it is more complicated to determine the 

optimum value.  But, it appears to be each of the main factors is related to the response 

variable Yield at their high level.  At this point, I need a more efficient procedure to find 

the optimum conditions for the model.   

 

5.3 Analyzing the Stationary Point 

 The second-order models illustrate quadratic surfaces such as minimum, 

maximum, ridge, and saddle.  If there exits an optimum then this point is a stationary 

point.  The stationary point is the combination of design variables where the surface is at 

either a maximum or a minimum in all directions.  If the stationary point is a maximum in 

some direction and minimum in another direction, then the stationary point is a saddle 

point.  When the surface is curved in one direction but is fairly constant in another 
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direction, then this type of surface is called ridge system (Oehlert 2000).  The stationary 

point can be found by using matrix algebra. The fitted second-order model in matrix form 

is follows: 

   xxxy Bb ''ˆˆ 0 ++= β  

The derivative of ŷ with respect to the elements of the vector x is 

   02
ˆ

=+=
∂
∂

x
x
y

Bb  

Therefore, the solution to stationary point is 

   bB 1

2
1 −−=sx  
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b is a (q X 1) vector of the first-order regression coefficients and B is a (q X q) symmetric 

matrix whose main diagonal elements are the quadratic coefficients ( iiβ̂ ) and whose off-

diagonal elements are one-half the mixed quadratic coefficients ( jiij ≠  β ) (Montgomery 

2005).  In result, the estimated response value at the stationary point can be calculated as 

     bss xy '
2
1ˆˆ 0 += β  

Therefore, I used excel to find the location of the stationary point for Yield.  The 

calculations are as follows: 

 
                

  0.42 0.375 0.15 0.088     1.318 
  0.375 -1.580 0.3 0.2     2.691 
B = 0.15 0.3 -1.53 -0.04   b = 2.114 
  0.088 0.2 -0.04 -0.93     1.260 
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  0.42 0.375 0.15 0.0875 
  0.375 -1.58 0.3 0.2375 
B-1 = 0.15 0.3 -1.53 -0.0375 
  0.0875 0.2375 -0.0375 -0.93 

 

The stationary point using the equation bB 1

2
1 −−=sx  is       

  -0.995 

  1.412 
xs = 1.138 
  0.249 

 

Please see Attachment – I, II for detailed matrix computations. 

 

At this instant, I can find the stationary point in terms of the natural variables: time, 

volume, concentration, and temperature.  

5
10

995.
−=− t            

5.2
5.7

412.1
−= V                

3
95

138.1
−= Con         

5
20

249.
−= T  

These calculations result in t = 5.025 ˜  5 minutes of reaction time, V = 11.029 ˜  11 liter 

solvent volume, Con = 98.414 ˜  98 percent of ethanol concentration, and T = 21.243 ˜  21 

0C temperature.  Using the equation bss xy '
2
1ˆˆ 0 += β , I can find that estimated maximum 

response Yield of deoiled rapeseed lecithin at the stationary point is 

   05.24ˆ =yieldy  

Thus, I can conclude that this level of main factors setting will result in best optimum 

solution for the Purified Lecithin Yield of deoiled rapeseed lecithin when fractionated 

with ethanol.   
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5.4 Conclusion of the Second-Order Model 

 When the first-order model shows a significant lack of fit, then an experimenter 

can use a second-order model to describe the response surface. There are many designs 

available to conduct a second-order design.  The central composite design is one of the 

most popular ones.  An experimenter can start with 2q factorial point, and then add center 

and axial points to get central composite design.  Adding the axial points will allow 

quadratic terms to be included into the model.  Second-order model describes quadratic 

surfaces, and this kind of surface can take many shapes. Therefore, response surface can 

represent maximum, minimum, ridge or saddle point. Contour plot is a helpful 

visualization of the surface when the factors are no more than three.  When there are 

more than three design variables, it is almost impossible to visualize the surface.  For that 

reason, in order to locate the optimum value, one can find the stationary point.  Once the 

stationary point is located, either an experimenter can draw a conclusion about the result 

or continue in further studying of the surface.   
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6. Three-level Fractional Factorial Design 

6.1 The 3-level Factorial Design  

 In addition to the second-order model, when the curvature in the response surface 

is concerned, an experimenter can design a model using a three- level factorial design.  

The factorial designs are widely used in experiments, when an experimenter needs to 

evaluate the joint effects of several controllable factors on the response.  The q3 factorial 

design is a factorial arrangement with q factors, each at three levels.  The levels of factor 

refer to as low, intermediate, and high, represented by the digit 0 (low), 1 (intermediate), 

and 2 (high).  For instance, in a 33 design, 021 indicates the treatment combination 

corresponding to factor A at the low level, B at the high level, and C at the intermediate 

level.  When the measurements on the response variable contain all possible 

combinations of the levels of the factors, this type of experimental design is called a 

complete factorial experiment, 

 In general, the q3 design require many runs, therefore it is unlikely that all q3 runs 

can be carried out under homogeneous conditions.  As a result, the confounding in blocks 

is unavoidable.  A complete factorial experiment can be placed in the blocks of unit, 

where units in the same block are homogeneous.  This type of the design technique is 

called confounding.  The complete blocks include every treatment in every block; on the 

contrary, the incomplete blocks do not include all the treatments or treatment 

combinations in each block.  The incomplete blocks are less efficient than complete 

blocks due to the lose of some information (usually the higher order interactions).  

Meanwhile, confounded factorials will tolerate more efficient result in main effects and 

low-order interactions.   
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 The q3 design can be confounded in s3 blocks, each with sq−3 units, where q > s.  

For instance, suppose that the q = 3 and s = 2.  The 33 factorial design is confounded in  

33 = 9 incomplete blocks, each with 33-2 = 31 units.  First, it is necessary to define a 

contrast by choosing a factorial effect to confound with blocks.  The general defining 

contrast is 

   qq xxxL ααα +++= ......2211 , 

 where iα represents the exponents on the ith factor in the effect to be confounded and ix  

is the level of the ith factor in a particular treatment combination (Montgomery 2005).  

Thus, ix takes the values of 0 (low level), 1 (intermediate level), or 2 (high level), where 

iα is 0, 1, or 2.  At this point, before I study more complex 3- level factorial design, I 

would like to construct a small example.  For example, if I let AB2 and AC to be the two 

components of interaction chosen to construct the design.  The two defining contrasts for 

assigning runs to blocks are  

   
2,1,0

2,1,02

2
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                        3)(mod   

                       3)(mod  

==+=
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hhxxL

uuxxL
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BA  

The L equations can take only the values of 0, 1, or 2 because of L (mod 3).  As a result, 

the treatment combinations in the 33 design assigned to the blocks based on the values of 

u and h, denoted as u/h block.  For example, the 121 treatment combination has an u 

value of  

   u = 1(1) + 2(2) + 0(1) = 5 (mod 3) = 2  

and has an h value of 

   h = 1(1) + 2(0) + 1(1) = 2 
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Therefore, the treatment combination 121 will be assigned to the 2/2 block.  I calculated 

the rest of the va lues of treatment combinations and their assigned block u/h using Excel.  

The results are shown in Figure 6.1.   

Figure 6.1 Confounding a 33 Design in 9 blocks  

  Treatments                  
A B C u h   0 / 0   0 / 1   0 / 2 
0 0 0 0 0   0 0 0   0 0 1   0 0 2 
0 0 1 0 1   1 1 2   1 1 0   1 1 1 
0 0 2 0 2   2 2 1   2 2 2   2 2 0 
0 1 0 2 0             
0 1 1 2 1             
0 1 2 2 2             
0 2 0 1 0             
0 2 1 1 1   1 / 0   1 / 1   1 / 2 
0 2 2 1 2   0 2 0   0 2 1   0 2 2 
1 0 0 1 1   1 0 2   1 0 0   1 0 1 
1 0 1 1 2   2 1 1   2 1 2   2 1 0 
1 0 2 1 0             
1 1 0 0 1             
1 1 1 0 2             
1 1 2 0 0   2 / 0   2 / 1   2 / 2 
1 2 0 2 1   0 1 0   0 1 1   0 1 2 
1 2 1 2 2   1 2 2   1 2 0   1 2 1 
1 2 2 2 0   2 0 1   2 0 2   2 0 0 
2 0 0 2 2             
2 0 1 2 0             
2 0 2 2 1             
2 1 0 1 2             
2 1 1 1 0             
2 1 2 1 1             
2 2 0 0 2             
2 2 1 0 0             
2 2 2 0 1             

 

 The block where the treatment combinations satisfying u = 0 and h = 0 is called a 

principal block, that is 0/0 block.  A principal block will always include the treatment 

combination 000…0 represented by I.  The principal block I act as an identity, that is, 

anything added by I is just itself.  In this example, the principal block 0/0 contains the 

treatment combinations 000, 112, and 221.  In general, the treatment combinations in the 
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principal block form a group with respect to addition modulus 3, and it is called a group-

theoretic property.  This implies that any element in the principal block may be generated 

by the addition of two other elements in the principal block modulus 3.  The operation ⊕  

is used to add the factor levels individually and reduce module 3.  Referring to the Figure 

6.1, one can see that 112 ⊕  221 = 000, 112 ⊕  112 = 221, and 221 ⊕  221 = 112.  Also, 

treatment combinations in any of the other blocks may be generated by adding one 

element in that block by each element in the principal block modulus 3.  For instance, 

since 100 is one of the other blocks, elements of 1/1 block can be computed as 

   000 ⊕  100 = 100   (mod 3) 

   112 ⊕  100 = 212   (mod 3) 

   221 ⊕  100 = 021   (mod 3). 

 Confounding a three-series design into nine blocks uses two components of 

interaction.  Thus, eight degrees of freedom will be confounded with blocks.  The four 

degrees of freedom confounded along with the components of interaction AB2 and AC.  

Therefore, the additional four degrees of freedom are from the generalized interactions of 

the defining effects.  These interactions can be written in a three series with exponents of 

0, 1, or 2, with the first nonzero exponent always being a 1.  If the first letter exponent is 

not 1, the entire expression is squared and the exponents are reduced modulus 3. As a 

result, if P1 and P2 are defining effects, then their generalized interactions are P1*P2 and 

P1* 2
2P . The generalized interaction of AB2 and AC are 

( )( ) ( )2222
21 CBAACABPP ==        the leading exponent is 2, so square it 

2

244

         

         

ABC

CBA

=

=
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( )( ) 223222
21 CBAACABPP ==        reduce exponents modulo 3 

         ( )22222 CBCB ==                   the leading exponent is 2, so square it 

         BC=  

More generally, when there are s independent defining contrasts, then ( ) 2/123 −− ss = p 

other effects are automatically confounded due to their generalized interactions with 

original effects. 

The one concern about q3 design is that it can require a large number of runs even 

for moderate values of q.  For instance, consider a 39 design with a single replicate would 

have 19,683 observations.  If the design is confounded in 39-6 = 27 incomplete blocks, 

then each block will require 27 observations. Therefore, the fractional factorial design 

might be an alternative approach when dealing with a large number of factors. 

 

6.2 The 3-level Fractional Factorial Design  

 A fractional factorial design is a revision of a factorial design without having to 

run the full factorial design.  The fractional factorial design partitions full q3 runs into 

blocks, but running only one of the blocks. This design allows an experimenter to get 

information on the main effects and the low-order interactions.  A fractional factorial 

model can be conducted to study the response surface.  I worked out the following Case 

Study using a 3- level fractional factorial design. 

 

……. Case Study 2 ……………………………………………………………………… 

The proposed design and analysis strategy is illustrated with the data from a 27-run 

experiment (Taguchi 1987), which was from a study about the PVC insulation for electric 
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wire.  The objective of the study is to understand the compounding method of plasticizer, 

stabilizer, and filler for avoiding embrittlement of PVC insulation, as well as to find the 

most suitable process conditions.  All nine factors are continuous and their levels are 

chosen to be equally spaced.  Among the factors, two are about plasticizer:  DOA 

(denoted by A) and n-DOP (B); two about stabilizer: Tribase (C) and Dyphos (D); three 

about filler: Clay (E), Titanium white (F), and Carbon (G); the remaining two are about 

the process condition: the number of revolutions of screw (H) and the cylinder 

temperature (J).  The measured response is the embrittlement temperature.  The design 

matrix and data are given in Table 6.1. 

 
Table 6.1.  Design matrix and response data, PVC insulation data. 
 
run A B C D E F G H J response 

1 0 0 0 0 0 0 0 0 0 5 
2 0 0 0 0 1 1 1 1 1 2 
3 0 0 0 0 2 2 2 2 2 8 
4 0 1 1 1 0 0 0 2 2 -15 
5 0 1 1 1 1 1 1 0 0 -6 
6 0 1 1 1 2 2 2 1 1 -10 
7 0 2 2 2 0 0 0 1 1 -28 
8 0 2 2 2 1 1 1 2 2 -19 
9 0 2 2 2 2 2 2 0 0 -23 

10 1 0 1 2 0 1 2 0 1 -13 
11 1 0 1 2 1 2 0 1 2 -17 
12 1 0 1 2 2 0 1 2 0 -7 
13 1 1 2 0 0 1 2 2 0 -23 
14 1 1 2 0 1 2 0 0 1 -31 
15 1 1 2 0 2 0 1 1 2 -23 
16 1 2 0 1 0 1 2 1 2 -34 
17 1 2 0 1 1 2 0 2 0 -37 
18 1 2 0 1 2 0 1 0 1 -29 
19 2 0 2 1 0 2 1 0 2 -27 
20 2 0 2 1 1 0 2 1 0 -27 
21 2 0 2 1 2 1 0 2 1 -30 
22 2 1 0 2 0 2 1 2 1 -35 
23 2 1 0 2 1 0 2 0 2 -35 
24 2 1 0 2 2 1 0 1 0 -38 
25 2 2 1 0 0 2 1 1 0 -39 
26 2 2 1 0 1 0 2 2 1 -40 
27 2 2 1 0 2 1 0 0 2 -41 
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 There are nine factors: A, B, C, D, E, F, H, G, and J, each at level 0, 1, or 2. Since 

a 39 design is costly, the model was designed using fraction.  This model is a 39-6 

fractional factorial design with 27 runs.  Thus, a 39-6 design is the 1/729 fraction of the 39 

design, where the fraction contains 39-6 runs.  In general, a sqq
s

−= 33*
3
1  design is the 

s3
1 fraction of the q3 design for q > s, where the fraction contains sq−3 runs.  In order to 

construct a sq−3 fractional factorial design, the treatment combinations are grouped into 

blocks.  Firstly, s components of interactions should be selected, and then q3 treatment 

combinations should be partitioned into s3 blocks, each with sq−3 units.  Secondly, the 

generalized interactions of s effects should be identified.  This experimental plan, as  

q3 design, will allow homogenous grouping of the experimental material in blocks.   

 Alternatively, a sq−3 fractional factorial design can be constructed by writing 

down the treatment combination of full sq−3 factorial design and then introducing the 

additional s factors by equating them to the components of interactions.  The group 

formed by the s defining words (generator) is called defining contrast subgroup.  Let 1, 

2,…,q-s denote the q-s independent columns of the 0, 1, 2’s that generate the sq−3 runs in 

the design.  The remaining s columns, q-s+1,…, q, can be generated as the interactions of 

the first q-s columns (Wu 2000).  For example, the procedure for constructing a one-ninth 

fraction of the 33 design is to write down the 32 full factorial design in the factors A and B 

as in Figure 6.2.  If I let AB2C2 be the word or the generator of the design, then the factor 

C can be represent by the notation 

   C = AB2. 
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More generally, if exponents of AB2C2 are 2,1 321 === ααα , where 131 )3( ααδ −=   

 = (3 – 2) (1) (mod 3) = 1, 232 )3( ααδ −= = (3 – 2) (2) = 2 (mod 3), the levels of x3 can 

be equated by the following relationship  

   22113 xxx δδ +=  
which follows 

   213 21 xxx += .    

The Figure 6.2 illustrates the 33-1design with the defining relation AB2C2. 

Figure 6.2 33-1 fractional design 

A B C = AB2 

0 0 0 
0 1 2 
0 2 1 
1 0 1 
1 1 0 
1 2 2 
2 0 2 
2 1 1 
2 2 0 

 

 A second approach can be used to construct a 39-6 fractional design in PVC 

insulation for electric wire.  Thus, the factors A, B, and E are used to define the treatment 

combinations of a full 33 design.  The rest of the six columns found by equating s = 6 

factors to components of interactions; A2B2C, AB2D, A2E2F, AE2G, BE2H, and A2BE2J. 

The levels of the last six factors satisfy these following equations: 

 BAC xxx +=      

 BAD xxx += 2   

 EAF xxx +=  

 EAG xxx += 2  

 EBH xxx += 2  
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 EBAJ xxxx ++= 2  

 For this experiment, the factor C is assigned to the column that equals the addition 

of the columns for factor A and B.  Since the column for C is used to estimate the main 

effect of C and also for the interaction effect between A and B, consequently the data 

from such design is not capable of distinguishing the estimate of C from the estimate of 

AB (Wu 2000).  In fact, when C is estimated, it is actually C+AB that is estimated. In this 

case, the factor of main effect C is said to be aliased with the AB interaction.  This 

aliasing relation is denoted below. 

 C = AB   or     I = ABC2, 

where I is the identity in group theory since 0 + z = z for any z.  The other alias relations 

for effects are:  D = A2B, F = AE, G = A2E, H = B2E, and J = AB2E.  The one-729th 

fraction is defined by I = ABC2 = A2BD2 = AEF2 = A2EG2 = B2EH2= AB2EJ2.  In order to 

obtained the rest of the defining contrast group I noted the complexity of the alias 

relationship in 39-6 fractional factorial design.  If a 39-6 has 6 generators P1, P2, P3, P4, P5, 

and P6, then the each constant is aliased to 1 +31 + 32 + 33 + 34 + 53 = 364 splits, noting 

that s – 1 = 5; these splits aliased to I are of the form  654321
654321
iiiiii PPPPPP where 

exponents are 0, 1, or 2, and the first nonzero exponent is 1.  The rest of the splits are 

aliased to s3 - 1= 36 -1 = 728 other splits.  Furthermore, the aliases of a split W are 

products of the form ( )654321
654321
iiiiii PPPPPPW , where the exponents ij are consent to range 

over all 36 = 729 combinations of 0, 1, or 2.  Therefore, there are 1 +31 + 32 + 33 + 43 = 

121 sets of aliases in addition to the aliases of I (Dehlert 2000), noting that q – s – 1 = 4.  

In result, each of the 121 sets of aliases has 729 names of interactions.   
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6.2.1 Analysis of Three-level Fractional Factorial Design 

 When the design deals with complex aliasing, it is very complicated to separate 

the large number of aliased effects and to interpret their significance.  Therefore, as in 

Case Study - 2, this kind of method can be used for screening designs.  They are used to 

estimate the main effects but not their interactions.  For this reason, using Minitab, I can 

determine the significance of the main factors.  The simple analysis starts with the main 

effects plot. A main effects plot is a plot of the means of the response variable for each 

level of a factor, which allows me to obtain a general idea of the possibly important main 

effects.  I showed the locations of main effects for PVC insulation for electric wire in 

Figure 6.3. 

Figure 6.3 Main Effects Plot of Strength Embrittlement Temperature  
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Analysis of the above main effect plots indicates that a main effect occurs when the mean 

response changes across the levels of a factor. Therefore, I can identify the strength of the 

effects of embrittlement temperature across factors by using the main effects plots as 

stated below.  

• Factors A and B decrease when they move from the high level to the low level of 

embrittlement temperature.  

• Factors D, E, F, H, and J remain practically the same when they move from the 

high level to the low level of embrittlement temperature. 

• Factors C and G increase when they move from the low level to the intermediate 

level and then decrease from the intermediate level to the high level of 

embrittlement temperature.  

My analysis concluded that the levels of factors D, E, F, H, and J affect the response in a 

similar way.  It seems no visible main effect is present, since the lines are almost parallel 

to the x-axis.  On the other hand, the levels of factors A, B, C, and G appear to affect the 

response differently.  The levels of A and B factors have larger difference in the vertical 

position of the plotted points, that is, steeply slopes.  Consequently, the levels of these 

factors appear to have a greater affect on the response embrittlement temperature.  I also 

showed the levels of each factor’s mean values that are given in Table 6.2. 
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Table 6.2  Mean values of each levels of factors 

 

Mean values of factor A 
                           Individual 95% CIs For Mean Based on 
                           Pooled StDev 
Level  N     Mean   StDev   -+---------+---------+---------+-------- 
0      9   -9.556  12.778                            (-----*------) 
1      9  -23.778  10.022             (------*------) 
2      9  -34.667   5.454   (-----*------) 
                            -+---------+---------+---------+-------- 
                           -40       -30       -20       -10 
 
Mean values of factor B 
                          
Level  N    Mean  StDev    +---------+---------+---------+--------- 
0      9  -11.78  14.62                        (-------*-------) 
1      9  -24.00  11.67            (-------*-------) 
2      9  -32.22   7.89    (-------*-------) 
                           +---------+---------+---------+--------- 
                         -40       -30       -20       -10 
 
Mean values of factor E 
 
                         Individual 95% CIs For Mean Based on 
                         Pooled StDev 
Level  N    Mean  StDev  ------+---------+---------+---------+--- 
0      9  -23.22  13.74  (----------------*----------------) 
1      9  -23.33  14.47  (----------------*----------------) 
2      9  -21.44  15.80     (----------------*----------------) 
                         ------+---------+---------+---------+--- 
                           -30.0     -24.0     -18.0     -12.0 
 
  
Mean values of factor C  
 
                         Individual 95% CIs For Mean Based on Pooled 
                         StDev 
Level  N    Mean  StDev     -+---------+---------+---------+-------- 
0      9  -21.44  20.04           (-------------*--------------) 
1      9  -20.89  14.76            (-------------*-------------) 
2      9  -25.67   3.91     (-------------*--------------) 
                            -+---------+---------+---------+-------- 
                         -35.0     -28.0     -21.0     -14.0 
 
 
Mean values of factor D 
  
                         Individual 95% CIs For Mean Based on 
                         Pooled StDev 
Level  N    Mean  StDev  -------+---------+---------+---------+-- 
0      9  -20.22  20.10         (---------------*----------------) 
1      9  -23.89  10.89  (----------------*----------------) 
2      9  -23.89  10.83  (----------------*----------------) 
                         -------+---------+---------+---------+-- 
                            -30.0     -24.0     -18.0     -12.0 
 
  
Mean values of factor F  
 
                         Individual 95% CIs For Mean Based on 
                         Pooled StDev 
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Level  N    Mean  StDev  ------+---------+---------+---------+--- 
0      9  -22.11  14.17    (----------------*----------------) 
1      9  -22.44  14.77    (----------------*---------------) 
2      9  -23.44  15.17  (----------------*----------------) 
                         ------+---------+---------+---------+--- 
                           -30.0     -24.0     -18.0     -12.0 
 
 
Mean values of factor G 
 
                         Individual 95% CIs For Mean Based on Pooled 
                         StDev 
Level  N    Mean  StDev     -+---------+---------+---------+-------- 
0      9  -25.78  14.57     (-------------*-------------) 
1      9  -20.33  14.03             (-------------*-------------) 
2      9  -21.89  14.95          (--------------*-------------) 
                            -+---------+---------+---------+-------- 
                         -35.0     -28.0     -21.0     -14.0 
Mean values of factor H 
 
                         Individual 95% CIs For Mean Based on 
                         Pooled StDev 
Level  N    Mean  StDev  ------+---------+---------+---------+--- 
0      9  -22.22  14.80    (----------------*----------------) 
1      9  -23.78  13.54  (---------------*----------------) 
2      9  -22.00  15.68    (----------------*----------------) 
                         ------+---------+---------+---------+--- 
                           -30.0     -24.0     -18.0     -12.0 
 
 
Mean values of factor J 
 
                         Individual 95% CIs For Mean Based on 
                         Pooled StDev 
Level  N    Mean  StDev  ------+---------+---------+---------+--- 
0      9  -21.67  15.84     (----------------*----------------) 
1      9  -23.78  13.67  (---------------*----------------) 
2      9  -22.56  14.49    (---------------*----------------) 
                         ------+---------+---------+---------+--- 
                           -30.0     -24.0     -18.0     -12.0 
 
 
 
 
 Although a table of means and a plot of main effects provide useful information, 

in order to confirm the results I need to use a more formal analysis of the data. Therefore, 

once again I can use Minitab to obtain statistically significant analysis of the data.  The 

analysis of variance of PVC insulation data is as follows: 
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Figure 6.4 Analysis of variance of PVC insulation 

Response Surface Regression: response versus A, B, E, C, D, F, G, H, J  
 
The analysis was done using coded units. 
 
Estimated Regression Coefficients for response 
 
Term          Coef  SE Coef        T      P 
Constant    2.2222   2.8034    0.793  0.439 
A         -12.5556   0.9017  -13.925  0.000 
B         -10.2222   0.9017  -11.337  0.000 
E           0.8889   0.9017    0.986  0.338 
C          -2.1111   0.9017   -2.341  0.032 
D          -1.8333   0.9017   -2.033  0.058 
F          -0.6667   0.9017   -0.739  0.470 
G           1.9444   0.9017    2.157  0.046 
H           0.1111   0.9017    0.123  0.903 
J          -0.4444   0.9017   -0.493  0.628 
 
S = 3.825   R-Sq = 95.2%   R-Sq(adj) = 92.7% 
 
 
Analysis of Variance for response 
 
Source          DF   Seq SS   Adj SS   Adj MS      F      P 
Regression       9  4953.22  4953.22  550.358  37.61  0.000 
  Linear         9  4953.22  4953.22  550.358  37.61  0.000 
Residual Error  17   248.78   248.78   14.634 
Total           26  5202.00 
 
 
 In order to determine which factors are significantly related to the response, I can 

use the least squares regression to analyze the variability of data.  The Figure 6.4 

provides a statistical summary of the main effects.  The main effects A, B, C, and G are 

significant at the 0.05 α-level.  Meanwhile the main effects D, E, F, H, and J do not 

appear to contribute to the response at the 0.05 α-level. This result confirms my earlier 

conclusion completed by using the main effect plots. The graphical analysis of the effects 

allows me to visually identify the important effects, while the statistical analysis confirms 

which factors are significantly related to the response. 

 My next step is to determine interactions effects that are significant.  In order for 

an interaction to be significant, at least one of its parent factors should be significant (Wu 

2000).  This fundamental principle for factorial effects is called the effect heredity 
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principle.  Since four of the parent factors are identified as significant, I cannot rule out 

any of the interactions between the main effects.  Hence, the analysis can start with 

interaction plots as shown in Figure 6.5.  This graph displays a full interactions plot 

matrix.  Each pair of factors provides the summary below: 

• A and B:  Both of the rows indicate that factors A and B interact. 

Row 1: The lines for the three levels of factors A decrease but at different rates 

while the level of factor B increases.  

Row 2: The lines for the three levels of factors B decrease but at different rates 

while the level of factor B increases. 

• A and C:  Both of the rows indicate that factors A and C interact. 

 Row 1: The level 0 decreases, the level 1 first increases then it decreases, and the  

 level 2 first decreases and then increases for factor A, while the level of C  

 increases. 

 Row 2: The level 0 and the level 1 decrease at different rates, and the  

 level 2 stays about the same as C increases, while the level of A increases. 

• B and C:  Both of the rows indicate that factors B and C interact. 

The movement of the levels of B and C is almost identical to the movement of the 

levels of A and C. 

• A and G – B and G – C and G : 

All three lines for each of the factor interactions are approximately parallel.   

The factor G does not appear to be interacting with factors A, B, and C. 
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Figure 6.5  Interaction Plot of Embrittlement Temperature 
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In addition to estimating the eight degrees of freedom in the main effects A, B, C, 

and G, there are 26 – 8 = 18 degrees of freedom left for estimating two-factor interactions 

and the error term.  Each two-factor interaction has 4 degrees of freedom. Consequently, 

there will not be enough degrees of freedom for estimating six of the two-factor 

interactions using ANOVA.  An alternative method is to decompose each of the main 

effects into linear and quadratic components: linear versus linear, linear versus quadratic, 

quadratic versus linear, or quadratic versus quadratic.  Note that if y0, y1, and y2 

correspond to the observations at level 0, 1, and 2, the linear effect is defined as 

  12 yy −  

and the quadratic effect as 

   .2)( 102 yyy −+  
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 Furthermore, the linear and quadratic effects are represented by two mutually 

orthogonal vectors: 

  )1,2,1(
6

1
),1,0,1(

2

1 −−=−=                              ql AA  

2  and 6 are the scaling constants and they will be dropped in the table for simplicity 

(Wu 2000).  Therefore, I can apply the formulas above to the columns of A, B, C, and G 

in Table 6.1 to facilitate Al, Aq, Bl, Bq, Cl, Cq and Gl, Gq.  For instance, I can obtain the 

column of ABll by multiplying Al and Aq. The rest of the two-way interactions are 

obtained similarly.  The decomposed main effects are given in Table 6.3.  

  

Table 6.3 The decomposition of Main Effects 

Al Aq Bl Bq Cl Cq Gl Gq (AB) ll (AC)ll (AG)ll BCll (BG)ll (CG)ll 
-1 1 -1 1 -1 1 -1 1 1 1 -1 1 1 1 
-1 1 -1 1 -1 1 0 -2 1 1 2 1 0 0 
-1 1 -1 1 -1 1 1 1 1 1 -1 1 -1 -1 
-1 1 0 -2 0 -2 -1 1 0 0 -1 0 0 0 
-1 1 0 -2 0 -2 0 -2 0 0 2 0 0 0 
-1 1 0 -2 0 -2 1 1 0 0 -1 0 0 0 
-1 1 1 1 1 1 -1 1 -1 -1 -1 1 -1 -1 
-1 1 1 1 1 1 0 -2 -1 -1 2 1 0 0 
-1 1 1 1 1 1 1 1 -1 -1 -1 1 1 1 
0 -2 -1 1 0 -2 1 1 0 0 0 0 -1 0 
0 -2 -1 1 0 -2 -1 1 0 0 0 0 1 0 
0 -2 -1 1 0 -2 0 -2 0 0 0 0 0 0 
0 -2 0 -2 1 1 1 1 0 0 0 0 0 1 
0 -2 0 -2 1 1 -1 1 0 0 0 0 0 -1 
0 -2 0 -2 1 1 0 -2 0 0 0 0 0 0 
0 -2 1 1 -1 1 1 1 0 0 0 -1 1 -1 
0 -2 1 1 -1 1 -1 1 0 0 0 -1 -1 1 
0 -2 1 1 -1 1 0 -2 0 0 0 -1 0 0 
1 1 -1 1 1 1 0 -2 -1 1 -2 -1 0 0 
1 1 -1 1 1 1 1 1 -1 1 1 -1 -1 1 
1 1 -1 1 1 1 -1 1 -1 1 1 -1 1 -1 
1 1 0 -2 -1 1 0 -2 0 -1 -2 0 0 0 
1 1 0 -2 -1 1 1 1 0 -1 1 0 0 -1 
1 1 0 -2 -1 1 -1 1 0 -1 1 0 0 1 
1 1 1 1 0 -2 0 -2 1 0 -2 0 0 0 
1 1 1 1 0 -2 1 1 1 0 1 0 1 0 
1 1 1 1 0 -2 -1 1 1 0 1 0 -1 0 
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As a result of my table, I can use regression analysis to identify the two-factor 

interactions that are significant.   

 
Figure 6.6  Regression Analysis of factors Main Factors and Two-way Interactions 
 
Regression Analysis: response versus Al, Aq, ...  
 
* (BC)ll is highly correlated with other X variables 
* (BC)ll has been removed from the equation. 
 
 
The regression equation is 
response = - 22.7 - 12.6 Al + 0.556 Aq - 10.2 Bl + 0.667 Bq - 0.278 Cl 
           - 0.278 Cq + 1.94 Gl - 1.17 Gq + 3.67 (AB)ll - 0.00 (AC)ll 
           + 0.222 (AG)ll - 0.083 (BG)ll + 0.583 (GC)ll 
 
 
 
Predictor      Coef  SE Coef       T      P 
Constant   -22.6667   0.5115  -44.31  0.000 
Al         -12.5556   0.6265  -20.04  0.000 
Aq           0.5556   0.3617    1.54  0.149 
Bl         -10.2222   0.8859  -11.54  0.000 
Bq           0.6667   0.4176    1.60  0.134 
Cl          -0.2778   0.8859   -0.31  0.759 
Cq          -0.2778   0.4176   -0.67  0.518 
Gl           1.9444   0.6265    3.10  0.008 
Gq          -1.1667   0.3617   -3.23  0.007 
(AB)ll        3.667    1.253    2.93  0.012 
(AC)ll       -0.000    1.253   -0.00  1.000 
(AG)ll       0.2222   0.4430    0.50  0.624 
(BG)ll      -0.0833   0.7673   -0.11  0.915 
(GC)ll       0.5833   0.7673    0.76  0.461 
 
 
S = 2.65784   R-Sq = 98.2%   R-Sq(adj) = 96.5% 
 
 
Analysis of Variance 
 
Source          DF       SS      MS      F      P 
Regression      13  5110.17  393.09  55.65  0.000 
Residual Error  13    91.83    7.06 
Total           26  5202.00 
 
 
 It appears that BCll component is not included in the analysis.  Most computer 

programs will print out an error message indicating that they are unable to estimate the 

coefficients of the collinear variables.  The collinearity occurs when the relative 

movements of one variable will be matched exactly by the relative movement of the other 

variable (Studenmund 2006).  As I mentioned earlier via interactions plot in Figure 6.5, 
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the two-way interactions ACll and BCll are completely explained by each other’s 

movements.  As a result, I can exclude one of the redundant interactions from the model.   

Also, the main effect C was found significant as shown in Figure 6.4, but when I 

reduced the model, the factor C became highly insignificant.  Recall that C is aliased with 

AB, therefore when using Minitab to estimate C, it also estimates the interaction effect 

between A and B.  The result of adding the two-way interaction of AB in the reduced 

model caused components of C to become insignificant.  Consequently, since the main 

effects A and B and their interaction ABll are highly significant, it is appropriate to remove 

the components of C from the data.  The components Al, Bl, Gl, Gq, and ABll appear to be 

significant at the 0.05 α-level.  At this point, I can analyze the response surface by fitting 

the data in a second-order model. 

 
Figure 6.7 The Final Model 
 
 
Response Surface Regression: response versus A, B, G  
 
The analysis was done using coded units. 
 
Estimated Regression Coefficients for response 
 
Term         Coef  SE Coef        T      P 
Constant  -20.333   0.8665  -23.465  0.000 
A         -12.556   0.6127  -20.491  0.000 
B         -10.222   0.6127  -16.683  0.000 
G           1.944   0.6127    3.173  0.005 
G*G        -3.500   1.0613   -3.298  0.003 
A*B         4.083   0.7504    5.441  0.000 
 
S = 2.600   R-Sq = 97.3%   R-Sq(adj) = 96.6% 
 
 
Analysis of Variance for response 
 
Source          DF   Seq SS   Adj SS   Adj MS       F      P 
Regression       5  5060.08  5060.08  1012.02  149.75  0.000 
  Linear         3  4786.50  4786.50  1595.50  236.09  0.000 
  Square         1    73.50    73.50    73.50   10.88  0.003 
  Interaction    1   200.08   200.08   200.08   29.61  0.000 
Residual Error  21   141.92   141.92     6.76 
Total           26  5202.00 
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Estimated Regression Coefficients for response using data in uncoded units 
 
Term          Coef 
Constant   1.08333 
A         -16.6389 
B         -14.3056 
G          8.94444 
G*G       -3.50000 
A*B        4.08333 
 
 
 
Figure 6.8 Contour plot of Embrittlement Temperature  
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My best regression model to describe the relationship between the embrittlement 

temperature and the factors is 

 

250.394.108.422.1056.1233.20 GGBABA xxxxxxy −++−−−=  
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A contour plot can show only two factors at a time, for that reason each factor is 

held at a constant level.  In order to avoid the embrittlement temperature of PVC 

insulation of an electric wire, the analysis of response surface indicates that the 

plasticizers DOA (A) and n-DOP (B) should set to level (-1, 0) and carbon (G) should set 

to level (0, 1).   
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6.3 The Conclusion of the Three-Level Fractional Factorial Design  

The factorial designs are widely used in experiments when the curvature in the 

response surface is concerned.  All treatment factors have 3- levels in the three- level 

factorial design.  This design requires many runs, as a result, the confounding in blocks 

can be used.  Also, the fractional factorial design can be an alternative approach when the 

number of factors gets large.   

The three- level fractional factorial design partitions the full q3 runs into blocks, 

but it only runs one of the blocks.  This design is more efficient, it allows collecting 

information on the main effects and on the low-order interactions. The one problem with 

three- level fractional factorial is that when number of factors is large, it becomes very 

complicated to separate the aliased effects and to interpret their significance.  For this 

reason, when q is large, most of the time this kind of design is used for screening designs.  

After an appropriate design is conducted, the response surface analysis can be done by 

any statistical computer software and then statistical analyses can be applied to draw the 

appropriate conclusions. 
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Appendix –I 

    A B C D A^2 B^2 C^2 D^2 AB AC AD BC BD CD Yield 
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 27.6 
  1 -1 -1 1 1 1 1 1 1 1 -1 -1 -1 -1 1 16.6 
  1 1 -1 -1 1 1 1 1 1 -1 -1 1 1 -1 -1 15.4 
  1 -1 1 -1 1 1 1 1 1 -1 1 -1 -1 1 -1 17.4 
  1 1 -1 1 -1 1 1 1 1 -1 1 -1 -1 1 -1 17 
  1 -1 1 1 -1 1 1 1 1 -1 -1 1 1 -1 -1 19 
  1 1 1 -1 -1 1 1 1 1 1 -1 -1 -1 -1 1 17.4 
  1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 1 12.6 
  1 1 -1 1 1 1 1 1 1 -1 1 1 -1 -1 1 18.6 
  1 -1 1 1 1 1 1 1 1 -1 -1 -1 1 1 1 22.4 
X = 1 1 1 -1 1 1 1 1 1 1 -1 1 -1 1 -1 21.4 
  1 -1 -1 -1 1 1 1 1 1 1 1 -1 1 -1 -1 14 
  1 1 1 1 -1 1 1 1 1 1 1 -1 1 -1 -1 24 
  1 -1 -1 1 -1 1 1 1 1 1 -1 1 -1 1 -1 15.6 
  1 1 -1 -1 -1 1 1 1 1 -1 -1 -1 1 1 1 13 
  1 -1 1 -1 -1 1 1 1 1 -1 1 1 -1 -1 1 14.4 
  1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22.6 
  1 1.41 0 0 0 2 0 0 0 0 0 0 0 0 0 23.4 
  1 -1.4 0 0 0 2 0 0 0 0 0 0 0 0 0 20.6 
  1 0 1.4 0 0 0 2 0 0 0 0 0 0 0 0 22.6 
  1 0 -1.4 0 0 0 2 0 0 0 0 0 0 0 0 13.4 
  1 0 0 1.4 0 0 0 2 0 0 0 0 0 0 0 20.6 
  1 0 0 -1.4 0 0 0 2 0 0 0 0 0 0 0 15.6 
  1 0 0 0 1.4 0 0 0 2 0 0 0 0 0 0 21 
  1 0 0 0 -1.4 0 0 0 2 0 0 0 0 0 0 17.6 

 

Design Matrix for analyzing the stationary point for response variable Yield. 

 

 

  25 0 0 0 0 20 20 20 20 0 0 0 0 0 0 
  0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 
  0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 
  0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 
  0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 
  20 0 0 0 0 24 16 16 16 0 0 0 0 0 0 
  20 0 0 0 0 16 24 16 16 0 0 0 0 0 0 
 X’X= 20 0 0 0 0 16 16 24 16 0 0 0 0 0 0 
  20 0 0 0 0 16 16 16 24 0 0 0 0 0 0 
  0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 
  0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 
  0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 
  0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 

 

The matrix multiplication of X transposes and X 
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Appendix - II 

 
  0.4 0 0 0 0 -0 -0 -0 -0 0 0 0 0 0 0 
  0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 
  0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 
  0 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 
  0 0 0 0 0.1 0 0 0 0 0 0 0 0 0 0 
  -0 0 0 0 0 0.1 -0 -0 -0 0 0 0 0 0 0 
 (X’X) -1 -0 0 0 0 0 -0 0.1 -0 -0 0 0 0 0 0 0 
  -0 0 0 0 0 -0 -0 0.1 -0 0 0 0 0 0 0 
  -0 0 0 0 0 -0 -0 -0 0.1 0 0 0 0 0 0 
  0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 
  0 0 0 0 0 0 0 0 0 0 0.0625 0 0 0 0 
  0 0 0 0 0 0 0 0 0 0 0 0.063 0 0 0 
  0 0 0 0 0 0 0 0 0 0 0 0 0.063 0 0 
  0 0 0 0 0 0 0 0 0 0 0 0 0 0.063 0 
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.06 

 

Inverse of matrix of X'X. 

 

 

  463.800       21.448 b0 
  26.359       1.318 b1 
  53.809     2.691 b2 
  42.270       2.114 b3 
  25.208       1.260 b4 

X'y =  374.373           β̂ = 0.420 b11 
  358.378       -1.580 b22 
  358.778       -1.530 b33 
  363.577       -0.930 b44 
  12.000       0.750 b12 
  4.800       0.300 b13 
  2.800       0.175 b14 
  9.600       0.600 b23 
  7.600       0.475 b24 
  -1.200       -0.075 b34 

 

The result for β̂ ’s using the matrix multiplication yXXX ')'(ˆ 1−=β  
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