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Abstract

The experimentation plays an important role in Science, Engineering, and
Industry. The experimentation is an application of treatments to experimental units, and
then measurement of one or more responses. It isapart of scientific method. It requires
observing and gathering information about how process and system works. In an
experiment, some input X’ s transform into an output that has one or more observable
response variablesy. Therefore, useful results and conclusions can be drawn by
experiment. In order to obtain an objective conclusion an experimenter needs to plan
and design the experiment, and analyze the results.

There are many types of experiments used in real-world situations and problems.
When treatments are from a continuous range of values then the true relationship between
y and x’s might not be known. The approximation of the response function
y =f (X1, X2,...Xg) + eiscalled Response Surface Methodology. This thesis puts
emphasis on designing, modeling, and analyzing the Response Surface Methodology.
Thethree types of Response Surface Methodology, the first-order, the second-order, and
three-level fractional factorial, will be explained and analyzed in depth. The thesis will
also provide examples of application of each model by numerically and graphically using

computer software
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1. Introduction

As an important subject in the statistical design of experiments, the Response
Surface Methodology (RSM) is a collection of mathematical and statistical techniques
useful for the modeling and analysis of problems in which a response of interest is
influenced by several variables and the objective is to optimize this response
(Montgomery 2005). For example, the growth of a plant is affected by a certain amount
of water x; and sunshine x2. The plant can grow under any combination of treatment X
and xo. Therefore, water and sunshine can vary continuously. When treatments are from
a continuous range of values, then a Response Surface Methodology is useful for
developing, improving, and optimizing the response variable. In this case, the plant
growth y is the response variable, and it is a function of water and sunshine. It can be
expressed as

y="f(x1,X2) +e

The variables x; and x; are independent variables where the response y depends
on them. The dependent variabley is a function of X1, X2, and the experimental error
term denoted as e The error term e represents any measurement error on the response,
aswell as other type of variations not counted inf. It isastatistical error that is assumed
to distribute normally with zero mean and variance s®. In most RSM problems, the true
response function f is unknown. In order to develop a proper approximation for f, the
experimenter usualy starts with alow-order polynomial in some small region. If the
response can be defined by a linear function of independent variables, then the
approximating function is a first-order model. A first-order model with 2 independent

variables can be expressed as



y=bg+bix; +box, +e
If there is a curvature in the response surface, thena higher degree polynomial should be
used. The approximating function with 2 variables is called a second-or der model:
y=bo +byxg +boXp +byyxfy + bypx +bipxx, +e
In genera al RSM problems use either one or the mixture of the both of these
models. In each model, the levels of each factor are independent of the levels of other
factors. In order to get the most efficient result in the approximation of polynomials the
proper experimental design must be used to collect data. Once the data are collected, the
Method of Least Square is used to estimate the parameters in the polynomias. The
response surface analysis is performed by using the fitted surface. The response surface
designs are types of designs for fitting response surface. Therefore, the objective of
studying RSM can be accomplish by
(1) understanding the topography of the response surface (local maximum, local
minimum, ridge lines), and
(2) finding the region where the optimal response occurs. The goal is to move
rapidly and efficiently along a path to get to a maximum or a minimum

response so that the response is optimized.

2. Literature Reviews

The RSM is important in designing, formulating, devel oping, and analyzing new
scientific studying and products. It isalso efficient in the improvement of existing
studies and products. The most common applicationsof RSM arein Industrial,

Biological and Clinical Science, Socia Science, Food Science, and Physical and



Engineering Sciences. Since RSV has an extensive application in the real-world, it is
also important to know how and where Response Surface Methodology started in the
history. According to Hill and Hunter, RSM method was introduced by G.E.P. Box and
K.B. Wilson in 1951 (Wikipedia 2006). Box and Wilson suggested to use a first-degree
polynomial model to approximate the response variable. They acknowledged that this
model is only an approximation, not accurate, but such a moded is easy to estimate and
apply, even when little is known about the process (Wikipedia 2006). Moreover, Mead
and Pike stated origin of RSM starts 1930s with use of Response Curves (Myers, Khuri,
and Carter 1989).

According to research conducted (Myers, Khuri, and Carter 1989), the orthogonal
design was motivated by Box and Wilson (1951) in the case of the first-order model. For
the second-order models, many subject- matter scientists and engineers have aworking
knowledge of the central composite designs (CCDs) and three-level designs by Box and
Behnken (1960). Also, the same research states that another important contribution came
from Hartley (1959), who made an effort to create a more economical or small composite
design. There exist many papers in the literatures about the response surface models. In
contrast, 3-leve fractional design has limited works. Thus, 3-level fractiona designisan
open research subject. Fractional Factorial Experiment Design for Factor at 3-Levels
(Connor and Zelen1959) is a helpful resource conducting this kind of design. Many
three-level fractional factorial designs and more importantly their alias tables can be
found in their study.

According to (Myers, Khuri, and Carter 1989), the important devel opment of

optimal design theory in the field of experimental design emerged following Word World



1. Elfving (1952, 1955, 1959), Chernoff (1053), Kiefer (1958, 1959, 1960, 1962), and
Kiefer and Wolfowitz were some of the various authors who published their work on
optimality.

One of the important facts is whether the system contains a maximum or a
minimum or a saddle point, which has a wide interest in industry. Therefore, RSM is
being increasingly used in the industry. Also, in recent years more emphasis has been
placed by the chemical and processing field for finding regions where there is an
improvement in response instead of finding the optimum response (Myers, Khuri, and
Carter 1989). In result, application and development of RSM will continue to be used in

many aress in the future.

3. Response Surface M ethods and Designs

Response Surface M ethods are designs and models for working with continuous
treatments when finding the optima or describing the response is the goa (Oehlert 2000).
The first goa for Response Surface Method is to find the optimum response. When there
is more than one response then it is important to find the compromise optimum that does
not optimize only one response (Oehlert 2000). When there are constraints on the design
data, then the experimental design has to meet requirements of the constraints. The
second goal is to understand how the response changes in a given direction by adjusting
the design variables. In general, the response surface can be visualized graphically. The
graph is helpful to see the shape of a response surface; hills, valleys, and ridge lines.
Hence, the function f (X1, X2) can be plotted versus the levels of x; and x» as shown as

Figure3.1.



Surface Plot of y vs x, z

40

Figure 3.1 Response surface plot

y=f(X1,X2) +e

In this graph, each value of x; and x, generates a y-value. Thisthree-dimensional graph
shows the response surface from the side and it is called a response surface plot.
Sometimes, it is less complicated to view the response surface in two-dimensiordl
graphs. The contour plots can show contour lines of x; and x» pairs that have the same

response value y. An example of contour plot is as shown in Figure 3-2.



Contour Plotofy vs x, z
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Figure3-2 Contour plot

In order to understand the surface of aresponse, graphs are helpful tools. But,
when there are more than two independent variables graphs are difficult or aimost
impossible to use to illustrate the response surface, since it is beyond 3-dimension. For

this reason, response surface models are essential for analyzing the unknown function f.

4. First-Order Model

4.1 Analysis of a First-Order Response Surface

The relationship betweenthe response variable y and independent variablesis
usualy unknown. In general, the low-order polynomia model is used to describe the
response surface f. A polynomia model is usually a sufficient approximation in a small
region of the response surface. Therefore, depending on the approximation of unknown

function f, either first-order or second-order models are employed.



Furthermore, the approximated function f isa first-order model when the response
isalinear function of independent variables. A first-order model with N experimental
runs carrying out on q design variables and a single response y can be expressed as
follows:

Yi =bg +byXq +boXo +..n +tbhyXg te (i =1 2%Ys, N)

Theresponsey is a functionof the design variables X1, X2,.. Xq, denoted asf, plusthe

experimental error. A first-order model isamultiple-regression model and the b;’sare

regression coefficients. | will explain multiple-regression in Section 4.1.1.

4.1.1 Multiple Regression Model

The relationship between a set of independent variables and the responsey is
determined by a mathematical model called regression model. When there are more than
two independent variables the regression model is called multiple-regression model. In
general, amultiple-regression model with g independent variable takes the form of

Yi =bg +byXq +boXxin +........ +bgXig +€ (i =1,2YaYa, N)

g
=bo+@ bjx; +e (=12 )
j=1

wheren > q. The parameter [3; measures the expected change in response y per unit
increase in x; when the other independent variables are held constant. The i observation
and ™" level of independent variable is denoted by xi;. The data structure for the multiple-

regression model is shown in Table 4.1.



Table 4.1 Data for Multiple-Regression Model

Yy X1 X2 . Xq
Y1 X11 X12 v X1q
Y2 X21 Xoo e X2q
Yn Xn1 Xn2 .- Xnq

The multiple-regression model can be written in a matrix form

y=XRB +e

where

oy 8 % e oou e

ey U & U e 0
y_gyZH X = @ Xa1 X270 Xyq R = &P1y e= €20

& 1 ¢ ¢ i i é: e:a

&0 | o D €

nBnxa) X1 Xn2" Xnqf a Bex) &n O(nx1)

yisan (n X 1) vector of observations, X isan (n X k) matrix of levels of independent
variables, 3 isa(k X 1) vector of regression coefficients, and eisan (n X 1) vector of
random errors (Montgomery 2005).

If X isa(k X k) matrix, then the linear system y = X3 + e has a unique |least
sguares solution given byB =(X'X)'X"y. The estimated regression equation is

y=Xb ,itcanasorepresentasy; =by +q b;x; 1=12...,n.

Qoo

1

4.2 Designsfor Fitting the First-Order Model

First-order modd is used to describe the flat surfaces that may or may not be

tilted. This modédl is not suitable for analyzing maximum, minimum, and ridge lines.



The first-order model approximation of the functionf is reasonable when f is not too
curved in that region and the region is not too big. First-order model is assumed to be an
adequate approximation of true surface in asmall region of the x’s (Montgomery 2005).
At this point my motivation isto illustrate a first-order model. The authors Dean and
Voss give a data set for fractionation experiment that is conducted by M. Sosada (1993)
in their case study sets. The reason | wanted to study this real- life experiment is, it
allows me to work on two different response variables. This Case Study also allows me
to demonstrate when first-order model is adequate to the given data versus when it is not.

With this respect, it is essential to illustrate a first-order design.

M. Sosada (1993) studied the effects of extraction time (t), solvent volume (V), ethanol
concentration (C), and temperature (T) on the yield and phosphatidylcholine enrichment
(PCE) of deoiled rapeseed lecithin when fractionated with ethanol.

Initially, asingle-replicate 2* experiment was conducted, augmented by three
center points. The design also included the sample variance of these three observations
s? =1.120 of PCE and s? =0.090 of Yield. The results for the 16 factoria points are

shown as the first 16 runsin Table 4.2 (Dean 1999).



Table4.2 Process Data for fitting the First-Order Model

Natural Variables Coded Variables Responses
t \Y C T A B C D Yield PCE
15 10 98 25 1 1 1 1 27.6 43.8
5 5 98 25 -1 -1 1 1 16.6 27.2
15 5 92 25 1 -1 -1 1 154 23.6
5 10 92 25 -1 1 -1 1 17.4 26.2
15 5 98 15 1 -1 1 -1 17 27.8
5 10 98 15 -1 1 1 -1 19 30.2
15 10 92 15 1 1 -1 -1 17.4 25.2
5 5 92 15 -1 -1 -1 -1 12.6 18.8
15 5 98 25 1 -1 1 1 18.6 28.8
5 10 98 25 -1 1 1 1 22.4 36.8
15 10 92 25 1 1 -1 1 21.4 334
5 5 92 25 -1 -1 -1 1 14 21.0
15 10 98 15 1 1 1 -1 24 38.0
5 5 98 15 -1 -1 1 -1 15.6 23.6
15 5 92 15 1 -1 -1 -1 13 20.2
5 10 92 15 -1 1 -1 -1 144 22.6

In order to simplify the calculation, it is appropriate to use coded variables for
describing independent variablesin the (-1, 1) interval. The independent variables are
rescaled therefore O is in the middle of the center of the design, and £1 are the distance
from the center with direction. The variablest, V, C and T are usually called natural
variables, because they are expressed in the natural units of measurement. Therefore, if t,
V, C and T denote the natural variables reaction time, volume, concentration, and
temperature respectively then the transformation of these natural variablesto coded
variables is

act-10 g=V-75 _Con- 95 T-20
5 25 3 5

The complete calculation of the coded variablesis shown in Table 4.2. | illustrated the
geometric view of the response variables PCE and Yield in Figure 4.1 and 4.2

respectively.

10



Figure 4.1 The Geometric View of the Response Variable PCE

2] +

19 24 224 276

155 17 165 /é

- B
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Figure 4.2 The Geometric View of the Response VariableYield
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3032 35 368 438
736 Aﬁ 272 /é
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188 Aé 21 /24 Y, A

4.2.1 Orthogonal First-Order Design
The experimenter needs to design a model to be efficient. For that reason, | have

to take estimation of variances into consideration. The orthogonal first-order designs

minimize the variance of the regression coefficientsb i Afirst-order designis

11



orthogonal if the off-diagonal elements of the (X" X) matrix are all zero (Montgomery
2005). Consequently, the cross-products of the columns of the X matrix sum to zero, the
inverse matrix of (X“X) can be obtained easily, and all of the regression coefficients are
uncorrelated. When the columns of the X matrix are mutually orthogonal then the levels
of the corresponding variables are linearly independent. | demonstrated the matrix

calculation for Case Study-1 using excel. The results are shown as follows:

Figure 4.3 Multiple Linear Model

101 1 1 1
1 01 1 1 1 16 0 0 0 0
1 01 1 -1 1 0 16 0 0 0
1 1 1 -1 1 XX= |0 0 16 0 0
1 01 1 1 A1 0 0 0 16 0
1 -1 1 1 A 0 0 0 0 16
101 1 -1 -1
X=1 1 1 1 2
1 01 -1 1 1
1 1 1 1 1 0.0625 0 0 0 0
101 1 -1 1 0 0.0625 0 0 0
1 1 1 1 1 xXxX)* | o 0 0.0625 0 0
101 1 1 A1 0 0 0 00625 0
1 -1 1 1 A1 0 0 0 0 0.0625
1 1 -1 -1 -1
1 1 1 -1 -1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -
x=1!1 12 1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1
1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -
1 1 1 1 1 -1 -1 -1 1 1 1 1 -1 -1 -1 -

The regression coefficients can be obtained by using the formulab = (X' X) 1X'y.

43.8

447.2 27.2

34.4 23.6

X'y = 65.2 26.2
65.2 27.8

34.4 30.2

252

18.8

12



27.950
2.150

b= 4075
4.075
2.150

YpPce=

28.8
36.8
334

21.0
38.0
23.6
20.2
22.6

The fitted regression model for PCE is

Ve =27.950 +2.150 A+ 4.075 B+ 4.075C +2.150 D (4.1)
The similar matrix form can be used to calculate the regression model for Yield.
27.60
286.000 16.60
22.800 15.40
Xy = 40.400 17.40
35.600 17.00
20.800 19.00
17.40
12.60
Yyield = 18.60
17.900 22.40
1.400 21.40
b = 2.550 14.00
2.200 24.00
1.275 15.60
13.00
14.40
The fitted regression model for Yield is
Vyierg =17.90 +1.40 A+ 255 B+2.20C +1.275 D 42)

13




4.3 M odel Adequacy Checking

In this section, | am going to analyze the model adequacy. It isimportant to
examine the fitted model if the model provides an adequate approximation of the true
response surface. | will use normality, analysis of variance, regression analysis, and lack
of fit test to examine both of the models. | used Minitab to conduct the regression
analysis and the variance of analysis of PCE and Yield. The results are shown

respectively in Figure 4.4 and 4.5.

Figure 4.4 Analysis of Variance of Purified Lecithin - PCE

Regression Analysis: PCE versus A, B, C,D

The regression equation is
PCE =28.0 + 2.15 A+ 4.08 B+ 4.08 C+ 2.15 D

Predi ct or Coef SE Coef T P
Const ant 27. 9500 0.5666 49.33 0.000
A 2.1500 0. 5666 3.79 0.003
B 4, 0750 0. 5666 7.19 0.000
C 4.0750 0. 5666 7.19 0.000
D 2. 1500 0. 5666 3.79 0.003

S =2.26635 RSg=92.3% R Sq(adj) = 89.5%

Anal ysi s of Variance

Sour ce DF SS \Y/S F P
Regr essi on 4 679.30 169.83 33.06 0.000
Residual Error 11 56. 50 5.14

Tot al 15 735.80

Figure 4.5 Analysis of Variance of Purified Lecithin —Yield

Regression Analysis: Yield versus A, B, C, D

The regression equation is
Yield =17.9 + 1.40 A+ 2.55 B+ 2.20C+ 1.28 D

Pr edi ct or Coef SE Coef T P
Const ant 17. 9000 0.3434 52.13 0.000

14



A 1. 4000 0. 3434
B 2.5500 0. 3434
Cc 2. 2000 0. 3434
D 1.2750 0. 3434
S = 1.37345 R-Sg = 92. 0%

Anal ysi s of Variance

Sour ce DF SS
Regr essi on 4 238.850
Resi dual Error 11 20. 750
Tot al 15 259.600

4.08
7.43
6. 41
3.71

R-Sq(adj)

M5

0. 002
0. 000
0. 000
0. 003

= 89.1%

F P

59.713 31.65 0.000

1.886

Even though, the Figures 4.4 and 4.5 can be produced using a variety of computer

software, it is imperative for me to show how to calculate and analyze them. The table of

analysis of variance for significance of the regression is given as follows:

Table 4.3 Analysis of Variance for Significance of Regression

Degrees of
Variation Sum of Squares Freedom Mean Square Fo
Regression SSk q MS: MS/M&
Error or Residuals S N-qg-1 MS
Total SSr N-1

N is observations

g isthe number of independent variable

The error sum of squares SS: is ameasurement of the amount of variation explained by

the regression, the smaller the S&, the better the regression model. The following is

called the decomposition of the total variation.

& = S5r- SR

& ¢
ga Vi
SSr=yy- S5

S

~

.2
0

=pxy- 22 2

n

15



& 0
éa i
izl g

SSE =yy-

@@ D> D> D> D> D> D~
o,
X
<

SE=yy-b'X'y
| demonstrated the process of the decomposition of variance for the response variables
PCE and Yield. The process of the decomposition of variance for PCE is shown as

follows:

y'y=13235.04

b'X'y =13178.54 and

U
a yi T /n=12499.24

=1 @
SSr= 1317854-1249924 = 679.30
SSe= 1323504-1317854 = 5650
SSr= 13235.04- 12499.24 = 73580

MSz = S/ q=679.30/ 4=169.825

MSe =SS /N-(q- 1=5650/(16-4-1) = 5.136

Therefore, the statistic F is SS/q = MSeg =
SSE/(N-qg-1) M&

The process of the decomposition of variance for Yield is shown as follows:

y'y =5386.16
b'X'y =5365.41 and

n a2
(0}
C8 2 /n=5126.56

i=z1 @

16



SSr= 536541-512656 = 23885
SSe= 5386.16-536541 = 20.75
SSr= 5386.16-512656 = 259.60

MSg = S/ q = 238.85/ 4= 59.712

MSe =SS /N-q-1=2075/(16-4-1) = 1.886

Therefore, the observed dtatistic F is SR/d - MSg =31.655. | will apply these
S&/N-q-1) M&

statistics to the significance test in the next section.

4.3.1 TheTest for Significance of Regression

A good estimated regression model shall explainthe variation of the dependent
variable in the sample. There are certain tests of hypotheses about the model parameters
that can help the experimenter in measuring the effectiveness of the model. The first of
all, these tests require for the error term g’ s to be normally and independently distributed
with mean zero and variance s®>. To check this assumption, | graphed the normal

probability of residuals for Case Study-1 as shown in Figure 4.6.

Figure 4.6 Normal Probability Plot of the Residuals

Normal Probability Plot of the Residuals
(response is PCE)
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Normal Probability Plot of the Residuals
(response is Yield)

Percent
@
o

Residual

If the residuals plot approximately along a straight line, then the normality
assumption is satisfied. In this study, the residuals can be judged as normally distributed;
therefore normality assumptions for both of the responses are satisfied. The error term is
the difference between the observed value y; and the corresponding fitted value §; , that is,
=y, - ¥;. Asaresult of thisassumption, observationsy; are a'so normally and
independently distributed. Therefore, the test for the significance of the regression can be
applied to determine if the relationship between the dependent variable y and independent
variables X1, X2, . Xq, €xists. The proper hypotheses are

Ho:Bi=R=...=4=0 vs
Ho:3?0  for at least onej.

The statistic F is compared to the critical Fa g nq1, if Observed F-value is greater
than the critical F, then Hp will be rgected. Equivalently, Hp is rgjected when P-vaue for
the statistic F is less than significant level a. Asaresult, the hypothesis for the statistical

analysis of response variable RSE can be written as:
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Ho :Ri=R=[=%=0 vs

Hi:4?0  foratleast onej.

At the significant level a = 0.05, the critical value F o5 4,11 = 3.36 is < the observed
F =33.063. Also, P-value from Figure 4.4 for the statistic F islessthan a. Thereisa
significant statistical evidence to reject the null hypothesis. It impliesthat at |east one of
the independent variables —time (A), volume (B), concentration (C), and temperature (D)
- contributes significantly to the model.

| used the same method to test for the significance of the regression model for the
response variable Yield. Using a% 5 level of significance, the critical value F gs411 =
3.36 is< the observed F = 31.655. Again, thereis alinear relationship between the
independent variables — time (A), volume (B), concentration (C), and temperature (D) -
and the response variable Yield of purified lecithin.

How well the estimated model fits the data can be measured by the value of R.
The R liesin theinterval [0,1]. When Reiscloser to the 1, the better the estimation of
regression equation fits the sample data. In general, the R measures percentage of the
variation of y around y that is explained by the regression equation. However, adding a
variable to the model always increased R, regardless of whether or not that variable
Statistically significant. Thus, some experimenter rather using adjusted- R?. When
variables are added to the mode!, the adjusted- R? will not necessarily increase. In actual

fact, if unnecessary variables are added, the value of adjusted - R?will often decrease.

For instance, consider the regression modelsin Case Study-1. | calculated the R and the

adjusted- R? for both of the models. | showed these results earlier in Figure 4.4 and 4.5.
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L. SSe 67930

RSE R? = Sk - =.923

SS,  SS;  735.80

R2-1. SS: /(n-q-1) _5650/(16- 4-1) — 895
SS; /(n- 1) 735.80/(15)

_288 _ o,

Yield R? = =,
259.60

:SSR:]_- SSE
s Ss

R2oy. SS/N-9-1)_20.75/16-4-1) _ o
SS, /(n- 1) 259.60/(15)

Both of RPand R2are statistically significant for the response variables RSE and Yield. It
suggests that the estimated regression equations for the Case Study-1 fit the datawell. At
this point, there is no sufficient reason to reject the initial regression Equations 4.1 and

4.2 for PCE and Yield of purified lecithin respectively.

4.3.2 TheTest for Individual Regression Coefficients

In order to determine whether given variables should be included or discluded
from the model, | need to test hypotheses for the individual regression coefficients. The
simple analysis starts with a main effects plot. A main effects plot is a plot of the means
of the response variable for each level of afactor. It allows an experimenter to obtain a
generd idea of which main effects may be important. The main effect is calculated by
subtracting the overall mean for the factor from the mean for each level. The Figure 4.7

and 4.8 show the locations of the main effects for PCE and Yield respectively.
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Figure4.7 Main Effects Plot of Purified Lecithin Phosphatidylcholine Enrichment

Main Effects Plot (data means) for PCE
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Figure 4.8 Main Effects Plot of Purified Lecithin Yield

Main Effects Plot (data means) for Yield
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My analysis indicates that the factors A, B, C, and D increase when they move
from the low level to the high level of purified lecithin Phosphatidylcholine Enrichment
(PCE) and Yield. Each level of the factors affects the response differently. Each factor at
their high level resultsin higher mean responses comparing to that at the low level.
Alternatively, the factors B and C appear to have a greater effect on the responses, with a
steeply dope. If the dopeis close to zero, the magnitude of the main effect would be
small. The main effect plots are helpful in visualizing which factors affect the response
the most, but in order to determine the significance of the factors, | have to conduct an
appropriate statistical test, at-test, to identify the significance of the main factors.

In general, an F-test is used to test for more than one coefficiert or, joint
hypotheses. When the hypotheses test is particular to one coefficient at atime, then t-test
is more common. To examine the significant contribution of the independent variables to
the phosphatidylcholine enrichment (PCE), | did the following calculations for the

following hypotheses:

Ho: Btime =0 Hi: RBime 20
Ho: Bvolume = 0 Ha: Bvolume ?0
Ho: Beone. =0 Hi: Beonc. 70
Ho: Bemp =0 Hi:Bemp 20

The test for this hypothesisis called t-statistic, expressed as

tg =

denominator /s 2W.; is called the standard error of the regression coefficient b,
ij j

b

S

2
Wi

where W is the diagonal elements of (X' X ) *corresponding tob;. The
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becausese(tfj)z JsA 2\ij . The values of se(tf,-) are also found in Figure 4.2. Recall

€27.950u

é ) 60625 0 0 0 00
£2.150 ¢ €0 065 0 0 0y
from earlier calculationthat b; =€4.0754, (X'X)*=é0 0 0625 0 0 4,
e u e u
&4.075 g0 0 0 065 0
§2.150 go o0 0 0 .0629

and s 2=5.14. Consequently, t-statistics are computed below:

b, 2150 _ b, _ 405 _
t, = = =3778, tg= = =7.
JSA A, ~/5.14*.0625 JSA AN, ~/5.14*.0625

tc =7.19,andt, =3.778.

These t-statistic values are compared with the critical t-values. The null hypothesis Ho:

[3j = Oisregected if the observed [to| > critical valuet, ol The level of significanceis at
20

5 percent, that is, a=.05. Noting that

ftal = lto| = 3.778 > t g, =2.201 and

lte] = [tc| = 719 >ty =2.201,

the I‘lLI|| hypothe%s HO: Btime = O, HO: Bv0|ume = 0, HO: Bconc = O, and
Ho: Bemp = O are rejected. | concluded that the independent variables: time (A), volume
(B), concentration (C), and temperature (D), all contribute significantly to the response

variable phosphatidylcholine enrichment (PCE).
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Furthermore, | used asimilar test for the hypothesis on the individual regression

é7.900 {
~ 1400 Y
coefficients for the yield of purified lecithin. Using the coefficientsb; :gz 550 i and
22.200 3
£1.275 §
s 2 =1.886 , the t-statistics were computed as follows:
ty = b . 140 =4077, tg= b, .__ 250 427,
JS2w,, +1886*.0625 JS$W,, ~/1.886*.0625
b b
t L= 220 =6.4078, t 2= 1275 =3.713.

c” JEw, 1886* 0625 o~ Jsw,, ~1886%.0625
Note that

ftal = 408> t,, =2.201,

lte] = 7.43>  t,5,, =2.201,

ftc] = 6.41> sy, =2.201, and

fto] = 371> t e, =2.201.
All t-statistics are larger than the critical t-vaue. | concluded that the independent
variables, the time (A), the volume (B), the concentration (C), and the temperature (D), all

contribute significantly to the model.

4.3.3 Center Pointsin a 29 Design

In addition to the orthogonal design, the standard first-order design is a 24
factorial with a center point. These designs consist of factorial points ns and the center
points n.. The center points are observations collected at the center pointsx; =0 (i =

1,2,..., Q). Thereplicated points at the center points can be used to calculate the pure
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error. Also, the contrast between the mean of the center points and the mean of the
factorial points provides atest for the lack of fit ina2 design. The lack of fit of afirst-
order model occurs when the model does not adequately represent the mean response as a
function of the factor level (Angela 1999). The analysis of variance of generic lack of fit

test for the first order model is given in Table 4.4.

Table 4.4 Analysis of Variance of Lack of Fit

Degrees of
Variation Sum of Squares Freedom Mean Square Fo
Residuals S N-qg-1 MS
Lack of fit SS o Ng-Q- 1 MS o MS_OF/MSDE
Pure Error SSee N - ng MSE

N observations
g number of independent variables
ng distinct design points

The residual sum of squares SS can be partitioned into two components,

S& =SS5e + SSor
where S5k is the sum of squares due to the pure error and SS_of is sum of sgquares due to
the lack of fit. The replicates at the center can be used to calculate the mean squares for

the pure error, where y..is the average of the n_runs at the center point

Nc
MSoe = nifl:centeré (yi - ¥.)/n. - 1.

c i=1

The mean squares for lack of fit is

MSooF = _Bor
ng-9g-1

25



then the rdio

F = MS o
0
MShe

is used to test the null hypothesis of the lack of fit.

Recall the Case Study-1, the authors Dean and V oss stated in their case study sets
that design included n; = 3 center points observation of each response variables PCE and
Yield. Since, these additional observations are not included in the data set; | can use the

given sample variance values of each three observations to test for lack of fit.

For testing the lack of fit for the response variable Yield of purified lecithin, the following
computations are carried out:

N=ns+n.=16+3=19,

Ng = 16 + (1 center point) = 17,

dfior=mg-Q-1= 12,

dfpe=N-ng=2 and

s? =.09.

Since the factorial points included no replication,
Sc2 :é.c (yi - Vc)z/nc - 1 will imply that MSpg = sc2 = 00.
i=1

Therefore, SS.. =MS,. *(N- n,) =.18,

SSe19 rung = SSe16 nng + 82 * (0, - 1) =20.750 + .18 = 20.93,

S& =SSk + SS o impliesSS_op = 20.750, and

MS_OF: &:1_729_
ng-q-1
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The test statistic for the lack of fit F, = TASLOF =19.213 is compared to the critical

E

Fa ng-a-1N- ng value.
The comparisonshowsthat F,=19.213" F,,,= 1941 Sincethe observed

statistic Fo value is dightly less than the critical F-value, | cannot conclude the
significance of regression model by thistest at significance level a=0.05. The analysis
of variance for Yield isgivenin Table 4.5. Therefore, | will conduct a more appropriate
model, such as a second-order model, and | will study in Section 5.2. However, the
analysis of the response variable Yield will still be continued in a single replicate of the 29

designin Section 4.4.

Table 4.5 Analysis of Variance of Lack of Fit for Yield

Degrees of
Variation Sum of Squares Freedom Mean Square Fo
Residuals 20.93 14 1.495
Lack of fit 20.75 12 1.729 19.213
Pure Error .18 2 .09

| carried out same type of calculation onthe data set for PCE using the sample

variance s? = 1.120. My result of the analysis of variance is given in Table 4.6.
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Table 4.6 Analysis of Variance of Lack of Fit for RCE

Degrees of
Variation Sum of Squares Freedom Mean Square Fo
Residuals 58.74 14 4.196
Lack of fit 56.50 12 4.708 4.204
PureError 2.24 2 112

Thetest statistic F,= 4.204 is smaller than the critical F,, , = 19.41 value. Thereis no

significant evidence of lack of fit at a = 0.05. Therefore, | can conclude that the true
response surface is explained by the linear model.

| can also use contour plot to visualize the response surface. These plots show
how the response variable relates to the two factors at atime. Since there are four
factors; each time two factors will be hold at a constant level when plotting the other two
factors. The response surface changes when the holding levels are changed. Therefore, it
is important to select the holding levels for the other factors. In general, the optimum
levels for factorial model with no curvature will be at one of the corners. The analysis of
the main effects plot in Figure 4.7 indicates that the best optimum setting includes Time,
Volume, Concentration, and Temperature, al at their high levels. These settings can be
used as the hold values for each factors when it was not included in the plot (Minitab).

The Figure 4.9 shows the contour plots of PCE.
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Figure 4.9 the Contour Plots of PCE

Contour Plots of PCE
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Since the response surface is a plane, the contour plots are parallel straight lines. The
analysis of the contour plotsis as follows:

B*A: This plot indicates that how variables, Volume and Time, are related to the
PCE of deoiled rapeseed |ecithin while the other factors, Concentration and Temperature,
are held constant at high level 1. The responseis at its highest (greater than 40) at the
darkest region of the graph (upper right corner).

C* A: Thisplot indicates that how variables, Concentration and Time, are
related to the PCE of deoiled rapeseed lecithin while the other factors, Volume and
Temperature, are held constant at high level 1. The responseis at its highest (greater than
40) at the darkest region of the graph (upper right corner).

D * A: This plot indicates that how variables, Temperature and Time, are related

to the PCE of deoiled rapeseed lecithin while the other factors, Volume and
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Concentration, are held constant at high level 1. The response is at its highest (greater
than 40) at the darkest region of the graph (upper right corner).

C * B: This plot indicates that how variables, Concentration and Volume, are
related to the PCE of deoiled rapeseed lecithin while the other factors, Time and
Temperature, are held constant at high level 1. The response is at its highest (greater than
40) at the darkest region of the graph (upper right corner).

D * B: This plot indicates that how variables, Temperature and Volume, are
related to the PCE of deoiled rapeseed lecithin while the other factors, Time and
Concentration, are held constant at high level 1. Theresponseis at its highest (greater
than 40) at the darkest region of the graph (upper right corner).

D * C: Thisplot indicates that how variables, Temperature and Concentration, are
related to the PCE of deoiled rapeseed lecithin while the other factors, Time and Volume,
are held constant at high level 1. The response is at its highest (greater than 40) at the
darkest region of the graph (upper right corner).

In order to maximize the phosphatidylcholine enrichment (PCE) of deoiled
rapeseed lecithin when fractionated with ethanol, | can choose high level settings for
Extraction Time, Solvent Volume, Ethanol Concentration, and Temperature. The final

estimated regression model using the coded variables is expressed as follows:

Yoce =27.950 +2.150 A+ 4.075B+ 4.075C +2.150 D

| found the maximum predicted responseis ¥, =40.40, achieved when all four

factors are at their high level (1).
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4.4 A Single Replicate of the 2% Design

In general, the 2% design can be large; therefore availability of resources allows an
experimenter to run asingle replicate of adesign. The Case Study-1 is a single replicate
2% design. An earlier analysis concluded that there may be a possibility that the
regression model for the Yield is not sufficiently explained by the main effects.
Therefore, | need to study the impact of the interactions. Recall that the data did not
include the 3 center points, thus | can continue to analyze the data by using asingle
replicate of the 2* design. The design matrix of main effects and their interactions are

shown in Table 4.7.

Table 4.7 TheMain Effects and I nteractions for 2* Design

A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD] Yield
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] 276
-1 1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 1 16.6
1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 154
-1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 17.4
1 1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 1 1 17
-1 1 1 -1 -1 -1 1 1 -1 -1 -1 1 1 -1 1 19
1 1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 1 1 1 17.4
-1 1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 1 12.6
1 1 1 1 -1 1 1 -1 -1 1 -1 -1 1 -1 -1 18.6
-1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 1 -1 224
1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 -1 -1 214
-1 1 -1 1 1 1 -1 1 -1 -1 -1 1 1 1 -1 14
1 1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1 -1 24
-1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 15.6
1 1 -1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 13
-1 1 -1 -1 -1 1 1 -1 -1 1 1 1 -1 1 -1 14.4

The problem of running an analysis of this saturated model isthat | cannot get an
estimate of error. Hereisthereason. There are 15 degrees of freedom in such
experiment, with 4 degrees of freedom for main effects, 6 degrees of freedom for 2-factor

interactions, 4 degrees of freedom for 3-factor interactions, and 1 degree of freedom for

31



4-factor interaction. Consequently, there are no degrees of freedom left to estimate the
error variance. Therefore, one way to analyze the unreplicated factoria design isto
examine the normality of the estimated effects. The experimenter can use a normal
effects plot to determine the statistical significance of both main and interaction effects.
The effects that are not significant will fall along a line, on the other hand, the significant
effects will stray farther from the line. The Figure 4.10 illustrates the normal plot of

these effects.

TheFigure 4.10 The Normal Plot of Effects
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My analysis is concluded that the main effects A, B, C, and D and the interactions
AB, BC, and BD are significant. Since they lie on right hand side of the line, their
contribution has a positive effect on the model. The rest of the effects lie along the line

are negligible. The factor Solvent VVolume (B) appears to have alargest effect because it
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lies furthest from the line. The lower term interaction plot as shown in Figure 4.11 can

also be a helpful resource in visualizing interactions.

Figure4.11 The Plot of Low-Order Interactions

Interaction Plot (data means) for Yield
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This interaction plot confirms the significance of AB, BC, and BD interactions as
stated earlier. Interaction occurs when one factor does not produce the same effect on the
response at different levels of another factor. Therefore, if the lines of two factors are
parald, there is no interaction. On the contrary, when the lines are far from being
paralldl, the two factors are interacting. In each case of AB, BC, and BD interactions, the
response yield increases when the line moves from the low level (-1) to high level (1).

For example, the factor A effect is small when the factor B is at the low level and large
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when the factor Bis at the high level. It appears that the best result is obtained when each
of the factors: A, B, C, and D is at their high level.

Another strategy is to analyze the significarce of data using the sparsity of effects
principle. This principle assumes that most systems are dominated by some main effects
and low-order interactions, and most high-order interactions are negligible (Myers 1995).
| assumed that the highest interaction component ABCD is negligible and its mean square
can be used to obtain an error term. Table 4.8 gives the analysis of the factorial designin

this respect.

Figure 4.12 Analysis of Variance of the 2* Factorial Design for Purified Lecithin —Yield

Regression Analysis: Yield versus A, B, ...

The regression equation is

Yield = 17.9 + 1.40 A+ 2.55 B+ 2.20 C+ 1.28 D+ 0.750 AB + 0.300 AC
+ 0.175 AD + 0.600 BC + 0.475 BD - 0.0750 CD + 0.100 ABC - 0.0250 ABD
- 0.0750 ACD + 0.0750 BCD

Predi ct or Coef SE Coef T P
Const ant 17. 9000 0.0250 716.00 0.001
A 1. 40000 0.02500 56.00 0.011
B 2.55000 0.02500 102.00 0.006
C 2.20000 0.02500 88.00 0.007
D 1.27500 0.02500 51.00 0.012
AB 0. 75000 0.02500 30.00 0.021
AC 0.30000 0.02500 12.00 0.053
AD 0.17500 0.02500 7.00 0.090
BC 0. 60000 0.02500 24.00 0.027
BD 0. 47500 0.02500 19.00 0.033
cD -0.07500 0.02500 -3.00 0.205
ABC 0.10000 0.02500 4,00 0.156
ABD -0.02500 0.02500 -1.00 0.500
ACD -0.07500 0.02500 -3.00 0.205
BCD 0.07500 0.02500 3.00 0.205

S=0.1 RSg=100.0% RSq(adj) = 99.9%

Anal ysis of Variance for Yield (coded units)

Sour ce DF Seq SS Adj SS Adj Ms F P
Main Effects 4 238.850 238.850 59.7125 5971.25 0.010
2-Vy Interactions 6 20. 390 20. 390 3. 3983 339.83 0.041
3-\Way Interactions 4 0. 350 0. 350 0. 0875 8.75 0.248
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Resi dual Error 1 0.010 0.010 0. 0100
Tot al 15 259.600

As it appeared on the normal plot of effects, 2-factor interactions are significant at
the level of % 5 significance. Meanwhile, the 3-factor interactions do not appear to
contribute significantly to the model. The t-tests reveal that the main effects of A, B, C,
and D and the interactions AB, BC, and BD are significant. My result confirms previous
graphical analysis of normal plot effects and interactions plot. In order to get the best
response surface result for yield of purified lecithin, | can consider the main effects at
their high level. The following estimated equation is my final model for the single

replicated 2* factoria design for the response variable Yield.

Yvieg =17.90 +1.40 A+ 2.55B + 2.2C +1.275D +0.75 AB + 0.60 BC + 0.475 BD

Therefore, predicted Yield of deoiled rapeseed lecithin when fractionated by ethanol is

Vvieg =17.90 +1.40 (1) + 2.55 (1) + 2.2 (1) + 1.275 (1) + 0.75 (1) (1) + 0.60 (1) (1) + 0.475 (1) (1)
i = 27.15

where dl four factors; Extraction Time, Solvent Volume, Ethanol Concentration, and

Temperature are at high level (+1) .
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4.5 Conclusion of the first-order model

A firgt-order model uses low-order polynomial terms to describe some part of the
response surface. This model is appropriate for describing a flat surface with or without
tilted surfaces. Usually afirst-order mode fitsthe data by least squares. Once the
estimated equation is obtained, an experimenter can examine the normal plot, the main
effects, the contour plot, and ANOVA statistics (F-test, t-test, R, the adjusted R?, and
lack of fit) to determine adequacy of the fitted model. Lack of fit of the first-order model
happens when the response surface is not a plane. If thereisa significant lack of fit of
the first-order model, then a more highly structured model, such as second-order model,

may be studied in order to locate the optimum.
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5. Second-Order M odel

5.1 Analysis of a Second-Order Response Surface

When there is a curvature in the response surface the first-order model is
insufficient. A second-order model is useful in approximating a portion of the true
response surface with parabolic curvature. The second-order model includes all the terms

in the first-order model, plus all quadratic terms like b,,x> and all cross product terms

likeby,x; X, . Itisusually expressed as

q q
-b 2 b o 2,3 2 p
y=heta by rabyXitaa byxxre
j= i= i<j

=b,+x,b+X, bx +e;,
where x; :(xli,xz,...,xiq)', b :(bl,bz,...,bq)'.

The second-order modd is flexible, because it can take a variety of functional
forms and approximates the response surface locally. Therefore, this model is usualy a

good estimation of the true response surface. Also, as | described in Section 4.1.1, the

method of |east squares can be applied to estimate the coefficients b ; in a second-order

model.

5.2 Designsfor Fitting Second-Order M odel

There are many designs available for fitting a second-order model. The most
popular oneis the central composite design (CCD). This design was introduced by Box
and Wilson. It consists of factorial points (from a 29 design and 29 fractional factorial
design), central points, and axial points. The following is the representation of 2q axial

points:
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CCD was often developed through a sequential experimentation. When a first-order

model shows an evidence of lack of fit, axia points can be added to the quadratic terms

with more center points to develop CCD. The number of center points n. at the origin

and the distance a of the axial runs from the design center are two parameters in the CCD

design. The center runs contain information about the curvature of the surface, if the

curvature is significant, the additional axial points allow for the experimenter to obtain an

efficient estimation of the quadratic terms. The Figure 5.1 illustrates the graphical view

of a central composite design for g = 2 factors.

Figure 5.1 Central Composite Design for g =2
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There are couples of ways of choosing aand n.. First, CCD canrunin
incomplete blocks. A block isa set of relatively homogeneous experimental conditions
so that an experimenter divides the observations into groups that are run in each block.
An incomplete block design may be conducted when all treatment combinations cannot
be run in each block. In order to protect the shape of the response surface, the block
effects need to be orthogonal to treatment effects. This can be done by choosing the
correct a and n¢ in factorial and axial blocks.

Also, a and n; can be chosen so that the CCD is not blocked. If the precision of
the estimated response surface at some point X depends only on the distance from x to the
origin, not on the direction, then the design is said to be rotatable (Oehlert 2000). When

the rotatable design is rotated about the center, the variance of § will remain same. Since

the reason for using response surface analysis is to located unknown optimization, it
makes sense to use a rotatable design that provides equal precision of estimation of the

surfacein al directions. The choice of a will make the CCD design rotatable by using

githera = 29’4 for the full factorial or a = 2(% X/ 4for afractional factorial.

5.2.1 Orthogonal Central Composite Design
Occasionally, a central composite design may contain only one observation at
each of the n; factorial points and 2q axial points, and with n. observations at the center.

This design is known as Khuri and Cornell orthogonal if

(nf +2a2)2=nfn
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where n is the total number of observations and n = n; + 2q + n. (Dean 1999). Orthogonal
central composite design with only one observation is achieved by appropriate choice of

a and n.. Consequently, the value of a would be

.1/2

genfn— n; 9
a=y———-:
¢ 2 -

e @

Recall from the Case Study-1, the test statistic for lack of fit indicated that the initial
model for fitting the response variable Yield was not adequate. Therefore, Sosada chose
to augment the 16 factorial points of the first-order design into a 25-run central composite

design (Dean 1999). The data set are as follows:

Table5.1 Datafor Yield of Deoiled Rapeseed L ecithin when Fractionated with Ethonal

A B C D Yield
1 1 1 1 27.6
-1 -1 1 1 16.6
1 -1 -1 1 154
-1 1 -1 1 17.4
1 -1 1 1 17
-1 1 1 1 19
1 1 -1 1 17.4
-1 -1 -1 1 12.6
1 -1 1 1 18.6
-1 1 1 1 224
1 1 -1 1 214
-1 -1 -1 1 14
1 1 1 1 24
-1 -1 1 1 15.6
1 -1 -1 1 13
-1 1 -1 1 14
0 0 0 0 22.6
1.414 0 0 0 23.4
-1.414 0 0 0 20.6
0 1.414 0 0 22.6
0 -1.414 0 0 13.4
0 0 1.414 0 20.6
0 0 -1.414 0 15.6
0 0 0 1.414 21
0 0 0 -1.414 17.6
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This design contains 25 numbers of observations, and 8 axial points with 1 center point.
In order to determine if this design orthogonal central composite design, | applied the test

by Khuri and Cornell.

n= 25

Ne= 1

Ny = 16

2q = 8

a= 1414

<112 ,1/2

&nin-n 2 =&f16*25- 169

a=C¢Y 7 g2 979+ 1414
G 2 - 2 p
e '}

since, (n, +22%f =n,n => 16+ 2r1.4142) =16*25 400 =400

this design is orthogonal .

The analysis of a second-order model is usually done by computer software. The
analysis of variance for fitting the data to the second-order and contour plots will help
characterize the response surface. In this section, my goal isto fit the second-order
model using central composite design. | will investigate the adequacy of the second-
order moddl for Yield of deoiled rapeseed lecithin when fractionated with ethanol. The

ANOVA and regression analysis for the response variable Yield are shown in Figure 5.2.
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Figure 5.2 Analysisof Purified Lecithin Yield

Central Composite Design

Fact ors:
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1
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Response Surface Regression: Yield versus A, B, C, D

The anal ysis was done using coded units.

Esti mat ed Regression Coefficients for Yield

Term

Constant 21
A 1
B 2
C 2
D 1
A*A 0
B*B -1
cC -1
D*D -0
A*B 0
A*C 0
A*D 0
B*C 0
B*D 0
CD -0

S = 0.7188

Coef
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2604
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5300
9300
7500
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4750
0750

RSq =
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. 1607
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1607
1607
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. 2541
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OO000O0 0000000000

98. 6%

T
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-6.021
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1. 669
0.974
3.339
2.643
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R-Sq(adj)

Anal ysis of Variance for Yield

Sour ce DF
Regr essi on 14
Li near 4
Squar e 4
I nteraction 6

Residual Error 10

Tot al

24

Seq SS
368. 056
300. 637

47. 029
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The regression equation is

Yield =21.4 + 1.32 A+ 2.69 B +
- 1.53 C'2 -
+ 0.475 BD -

0.930 DM2 +
0.075 CD

Adj SS
368. 056
300. 637
47.029
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P
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000
000
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The Minitab computes the linear, quadratic, and interactions terms in the mode.
My analysis of variance indicates that there are significant interactions between the
factors. The small p-vaues for linear and square terms also point out that their
contribution is significant to the model. Since, there are no replicated center points; the
software cannot obtain alack-of-fit. But, small p-vaues for the interactions and the
sguared terms suggest there is curvature in the response surface.

Moreover, the main effects can be referred to as significant at an individual .05
significant level. The quadratic terms, B?, C2, and D? and interaction terms AB, BC, and
BD, significantly contribute to the response model at a= 0.05. Asaresult, my fina

model for the response variable Yield is concluded as follows:

Vyigq = 21.448 +1.32A+2.69B +2.11C +1.26D - 1.58B% - 1.53C?* - 0.93D?
0.75 AB + 0.60BC +0.48BD

Since the response surface is explained by the second-order model, it is necessary
to analyze the optimum setting. The graphical visuaization is very helpful in
understanding the second-order response surface. Specifically, contour plots can help
characterize the shape of the surface and locate the optimum response approximately. |

graphed the contour plot of purified lecithin Yield asis shown in Figure 5.3.
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Figure 5.3 Contour Plot of Purified Lecithin Yield

Contour Plots of Yield
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Hold Values
A 1.414
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C 1.414
D 1.414

Since the response surface is not a plane, it is more complicated to determine the
optimum value. But, it appears to be each of the main factorsis related to the response
variable Yield at their high level. At this point, | need a more efficient procedure to find

the optimum conditions for the model.

5.3 Analyzing the Stationary Point

The second-order models illustrate quadratic surfaces such as minimum,
maximum, ridge, and saddle. If there exits an optimum then this point is a stationary
point. The stationary point is the combination of design variables where the surface is at
either amaximum or aminimum in al directions. If the stationary point isamaximum in
some direction and minimum in another direction, then the stationary point isa saddle

point. When the surface is curved in one direction but is fairly constant in another



direction, then this type of surface is called ridge system (Oehlert 2000). The stationary
point can be found by using matrix algebra. The fitted second-order model in matrix form
is follows:

y= 60 +X'b + X' Bx

Thederivative of §with respect to the elements of the vector x is

ﬂ=b+28x:0
x

Therefore, the solution to stationary point is

1

x.=-=B'b
S 2

ép, U é,, b,/2 -, by /20
bl el D
— 2U - € 220 T 2q ' <U
whereb= 70 ad B a . u
6 : -
& gym by /24

bisa(q X 1) vector of the first-order regression coefficientsand B isa(q X ) symmetric
matrix whose main diagonal elements are the quadratic coefficients ( b, ) and whose off-

diagonal elements are one-half the mixed quadratic coefficients (b;; i* j) (Montgomery

2005). In result, the estimated response value at the stationary point can be calculated as

Therefore, | used excel to find the location of the stationary point for Yield. The

caculations are as follows:

0.42  0.375 0.15 0.088 1.318

0.375 -1.580 0.3 0.2 2.691

B= 0.15 0.3 -1.53 -0.04 b= 2.114
0.088 0.2 -0.04 -0.93 1.260
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0.42 0.375 0.15 0.0875

0.375 -1.58 0.3 0.2375

B*'= 0.15 0.3 -1.53 -0.0375
0.0875 0.2375 _ -0.0375 -0.93

The stationary point using the equationx, =- %B'lb is

-0.995
1.412
Xg = 1.138
0.249
Please see Attachment — I, |1 for detailed matrix computations.

At thisinstant, | can find the stationary point in terms of the natural variables: time,
volume, concentration, and temperature.

- .995:% 1412=Y 75 1.1382% .249:%

These calculations result int = 5.025~ 5 minutes of reaction time, V =11.029 ~ 11 liter

solvent volume, Con = 98.414~ 98 percent of ethanol concentration, and T = 21.243~ 21
°C temperature. Using the equationy, =b, +%x‘S b, | can find that estimated maximum

response Yield of deoiled rapeseed lecithin at the stationary point is
9yield = 2405
Thus, | can conclude that this level of main factors setting will result in best optimum

solution for the Purified Lecithin Yield of deoiled rapeseed |lecithin when fractionated

with ethanol.
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5.4 Conclusion of the Second-Order Model

When the first-order model shows a significant lack of fit, then an experimenter
can use a second-order model to describe the response surface. There are many designs
available to conduct a second-order design. The central composite design is one of the
most popular ones. An experimenter can start with 29 factorial point, and then add center
and axial points to get central composite design. Adding the axia pointswill allow
guadratic terms to be included into the model. Second-order model describes quadratic
surfaces, and this kind of surface can take many shapes. Therefore, response surface can
represent maximum, minimum, ridge or saddle point. Contour plot is a helpful
visualization of the surface when the factors are no more than three. When there are
more than three design variables, it is aimost impossible to visualize the surface. For that
reason, in order to locate the optimum value, one can find the stationary point. Once the
stationary point is located, either an experimenter can draw a conclusion about the result

or continue in further studying of the surface.
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6. Three-level Fractional Factorial Design

6.1 The 3-level Factorial Design

In addition to the second-order model, when the curvature in the response surface
is concerned, an experimenter can design a model using athree-level factoria design.

The factorial designs are widely used in experiments, when an experimenter needs to

evaluate the joint effects of several controllable factors on the response. The 39 factorial
design isafactoria arrangement with q factors, each at three levels. The levels of factor
refer to as low, intermediate, and high, represented by the digit O (low), 1 (intermediate),
and 2 (high). For instance, in a 3 design, 021 indicates the treatment combination
corresponding to factor A at the low level, B at the high level, and C at the intermediate
level. When the measurements on the response variable contain all possible
combinations of the levels of the factors, this type of experimental designiscalled a

complete factorial experiment,

In general, the 39 design require many runs, therefore it is unlikely that all 3%runs
can be carried out under homogeneous conditions. As a result, the confounding in blocks
isunavoidable. A complete factorial experiment can be placed in the blocks of unit,
where units in the same block are homogeneous. Thistype of the design techniqueis
called confounding. The complete blocks include every treatment in every block; on the
contrary, the incomplete blocks do not include al the treatments or treatment
combinations in each block. The incomplete blocks are less efficient than complete
blocks due to the lose of some information (usually the higher order interactions).
Meanwhile, confounded factorials will tolerate more efficient result in main effects and

low-order interactions.
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The 39 design can be confounded in 3°blocks, each with 39" Sunits, where q > s.
For instance, suppose that the q = 3and s= 2. The 3 factoria design is confounded in
3% = 9 incomplete blocks, each with 3*2 = 3! units. Firgt, it is necessary to define a
contrast by choosing a factorial effect to confound with blocks. The general defining
contrast is

L=ajxg +asXs +...... +agXq,

wherea , represents the exponents on the it" factor in the effect to be confounded and x;
isthe level of the i factor in a particular treatment combination (Montgomery 2005).
Thus, x; takes the values of O (low level), 1 (intermediate level), or 2 (high level), where
a;is0, 1, or 2. At thispoint, before | study more complex 3-level factorial design, |
would like to construct a small example. For example, if | let AB? and AC to be the two
components of interaction chosen to construct the design. The two defining contrasts for

assigning runs to blocks are

L; = X5 +2Xg =u (mod 3) u=0,12
L2=XA+XC=h (mOd 3) h=O,ZL2

The L equations can take only the values of 0, 1, or 2 because of L (mod 3). Asaresult,
the treatment combinations in the 3% design assigned to the blocks based on the values of
u and h, denoted as u/h block. For example, the 121 treatment combination hasan u
value of

u=1(1)+2(2)+0(1) =5(mod 3) =2
and has an h value of

h=1(1) +2(0) + 1(1) = 2
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Therefore, the treatment combination 121 will be assigned to the 2/2 block. | calculated
the rest of the values of treatment combinations and their assigned block u/h using Excel.

The results are shown in Figure 6.1.

Figure 6.1 Confounding a 3> Design in 9 blocks

Treatments
A B C u h 0/0 0/1 0/2
0 0 0 0 0 000 001 002
0 0 1 0 1 112 110 111
0 0 2 0 2 221 222 220
0 1 0 2 0
0 1 1 2 1
0 1 2 2 2
0 2 0 1 0
0 2 1 1 1 1/0 1/1 1/2
0 2 2 1 2 020 021 022
1 0 0 1 1 102 100 101
1 0 1 1 2 211 212 210
1 0 2 1 0
1 1 0 0 1
1 1 1 0 2
1 1 2 0 0 2/0 2/1 2/2
1 2 0 2 1 010 011 012
1 2 1 2 2 122 120 121
1 2 2 2 0 201 202 200
2 0 0 2 2
2 0 1 2 0
2 0 2 2 1
2 1 0 1 2
2 1 1 1 0
2 1 2 1 1
2 2 0 0 2
2 2 1 0 0
2 2 2 0 1

The block where the treatment combinations satisfyingu=0and h=0iscalled a
principal block, that is 0/0 block. A principal block will always include the treatment
combination 000...0 represented by I. The principal block | act as an identity, that is,
anything added by | isjust itself. Inthis example, the principal block 0/0 contains the

treatment combinations 000, 112, and 221. In genera, the treatment combinations in the
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principal block form a group with respect to addition modulus 3, and it is called a group-
theoretic property. Thisimplies that any element in the principal block may be generated
by the addition of two other elementsin the principal block modulus 3. The operation A
is used to add the factor levels individually and reduce module 3. Referring to the Figure
6.1, one can seethat 112 A 221=000, 112 A 112=221,and 221 A 221=112. Also,
treatment combinations in any of the other blocks may be generated by adding one
element in that block by each element in the principal block modulus 3. For instance,
since 100 is one of the other blocks, elements of 1/1 block can be computed as

000 A 100=100 (mod 3)

112 A 100=212 (mod 3)

221 A 100=021 (mod 3).

Confounding a three-series design into nine blocks uses two components of
interaction. Thus, eight degrees of freedom will be confounded with blocks. The four
degrees of freedom confounded along with the components of interaction AB? and AC.
Therefore, the additional four degrees of freedom are from the generalized interactions of
the defining effects. These interactions can be written in a three series with exponents of
0, 1, or 2, with the first nonzero exponent always being a 1. If the first letter exponent is
not 1, the entire expression is squared and the exponents are reduced modulus 3. As a

result, if P1 and P, are defining effects, then their generalized interactions are P1* P, and
P1* P/. The generalized interaction of AB? and AC are
PP, = (A|32 XAC) = (AZBZC)2 the leading exponent is 2, so square it

= A*B*C?

= ABC?

51



PP? = (AB2 XAC)2 = A’B*C? reduce exponents modulo 3

=B*C? = (BZC2)2 the leading exponent is 2, so square it
=BC
More generaly, when there are sindependent defining contrasts, then (35 - 2s- 1)/2 =p

other effects are automatically confounded due to their generalized interactions with

original effects.

The one concern about 39 design is that it can require alarge number of runs even
for moderate values of g. For instance, consider a 3° design with a single replicate would
have 19,683 observations. If the design is confounded in 3% = 27 incomplete blocks,
then each block will require 27 observations. Therefore, the fractional factorial design

might be an aternative approach when dealing with alarge number of factors.

6.2 The 3-level Fractional Factorial Design

A fractional factorial design isarevision of afactoria design without having to

run the full factorial design. The fractional factorial design partitions full 39 runs into
blocks, but running only one of the blocks. This design allows an experimenter to get
information on the main effects and the low-order interactions. A fractional factoria
model can be conducted to study the response surface. | worked out the following Case

Study using a 3-level fractiona factorial design.

The proposed design and analysis strategy is illustrated with the data from a 27-run

experiment (Taguchi 1987), which was from a study about the PV C insulation for electric
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wire. The objective of the study is to understand the compounding method of plasticizer,
stabilizer, and filler for avoiding embrittlement of PV C insulation, as well as to find the
most suitable process conditions. All nine factors are continuous and their levels are
chosen to be equally spaced. Among the factors, two are about plasticizer: DOA
(denoted by A) and n-DOP (B); two about stabilizer: Tribase (C) and Dyphos (D); three
about filler: Clay (E), Titanium white (F), and Carbon (G); the remaining two are about
the process condition: the number of revolutions of screw (H) and the cylinder
temperature (J). The measured response is the embrittlement temperature. The design

matrix and data are given in Table 6.1.

Table6.1. Design matrix and response data, PVC insulation data.

run A B C D E F G H J response
1 0 0 0 0 0 0 0 0 0 5
2 0 0 0 0 1 1 1 1 1 2
3 0 0 0 0 2 2 2 2 2 8
4 0 1 1 1 0 0 0 2 2 -15
5 0 1 1 1 1 1 1 0 0 -6
6 0 1 1 1 2 2 2 1 1 -10
7 0 2 2 2 0 0 0 1 1 -28
8 0 2 2 2 1 1 1 2 2 -19
9 0 2 2 2 2 2 2 0 0 -23
10 1 0 1 2 0 1 2 0 1 -13
11 1 0 1 2 1 2 0 1 2 -17
12 1 0 1 2 2 0 1 2 0 -7
13 1 1 2 0 0 1 2 2 0 -23
14 1 1 2 0 1 2 0 0 1 -31
15 1 1 2 0 2 0 1 1 2 -23
16 1 2 0 1 0 1 2 1 2 -34
17 1 2 0 1 1 2 0 2 0 -37
18 1 2 0 1 2 0 1 0 1 -29
19 2 0 2 1 0 2 1 0 2 -27
20 2 0 2 1 1 0 2 1 0 -27
21 2 0 2 1 2 1 0 2 1 -30
22 2 1 0 2 0 2 1 2 1 -35
23 2 1 0 2 1 0 2 0 2 -35
24 2 1 0 2 2 1 0 1 0 -38
25 2 2 1 0 0 2 1 1 0 -39
26 2 2 1 0 1 0 2 2 1 -40
27 2 2 1 0 2 1 0 0 2 -41
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There are ninefactors: A, B, C,D, E, F, H, G, and J, each at level 0, 1, or 2. Since
a esign is costly, the model was designed using fraction. ism isa3”
3% design i ly, the model designed using fraction. This model is a 3%

fractional factorial design with 27 runs. Thus, a3 ® design is the 1/729 fraction of the 3°

design, where the fraction contains 3°° runs. In general, a 3%* 39=3%° designisthe

3% fraction of the 39design for g > s, where the fraction contains 3% °runs. In order to

construct a 3% Sfractional factorial design, the treatment combinations are grouped into
blocks. Firstly, scomponents of interactions should be selected, and then 39 treatment

combinations should be partitioned into 3°blocks, each with 39 Sunits. Secondly, the

generalized interactions of s effects should be identified. This experimenta plan, as

39design, will allow homogenous grouping of the experimental material in blocks.
Alternatively, a39 Sfractional factorial design can be constructed by writing

down the treatment combination of full 39" factorial design and then introducing the

additional s factors by equating them to the components of interactions. The group

formed by the s defining words (generator) is called defining contrast subgroup. Let 1,

2,...,0-s denote the g-s independent columns of the 0, 1, 2’ s that generate the 39" Srunsin
the design. The remaining s columns, g-st1,..., g, can be generated as the interactions of
the first g-s columns (Wu 2000). For example, the procedure for constructing a one-ninth
fraction of the 3% design is to write down the 32 full factorial design in the factors A and B
asin Figure 6.2. If | let AB*C? be the word or the generator of the design, then the factor
C can be represent by the notation

C = AR’



More generally, if exponents of AB?C?area; =1a,=a5=2,whered; = (3- az)a,
=B-2)(1)(mod3) =1,d, =(3-az)a,=(3-2) (2) =2 (mod 3), the levels of x; can
be equated by the following relationship

X3 =d;X; +dyX;
which follows

X3 :1X1 + 2X2 .

The Figure 6.2 illustrates the 3*'design with the defining relation AB?C?.

Figure6.2 3* fractional design

C = AB?
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A second approach can be used to construct a 3% fractional designin PVC
insulation for electric wire. Thus, the factors A, B, and E are used to define the treatment
combinations of afull 3° design. The rest of the six columns found by equating s= 6
factors to components of interactions; A’B°C, AB’D, A’E°F, AE°G, BE?H, and A?BE?2J.
The levels of the last six factors satisfy these following equations:

Xc = Xp + Xg

Xp = 2Xp + Xp

Xg = Xa + Xg

Xg = 2Xp + Xg

Xy =2Xg + Xg
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X3 =Xp +2Xg + Xg

For this experiment, the factor C is assigned to the column that equals the addition
of the columns for factor A and B. Since the column for C is used to estimate the main
effect of C and also for the interaction effect between A and B, consequently the data
from such design is not capable of distinguishing the estimate of C from the estimate of
AB (Wu 2000). In fact, when C is estimated, it is actualy C+AB that is estimated. In this
case, the factor of main effect C is said to be aliased with the AB interaction. This
aliasing relation is denoted below.

C=AB or |=ABC?
where | is the identity in group theory since 0 + z= zfor any z The other alias relations
for effectsare: D =A?B, F = AE, G = A%E, H = B’E, and J = AB’E. Theone-729"
fraction is defined by | = ABC? = A°BD? = AEF? = A’EG? = B’EH’= AB’EX. In order to
obtained the rest of the defining contrast group | noted the complexity of the alias

relationship in 3°® fractional factorial design. If a3%® has 6 generators Py, Py, Ps, Ps, Ps,
and Pg, then the each constant is aliased to 1 +3' + 32 + 3% + 3* + 3°= 364 splits, noting
that s—1 = 5; these splits aliased to | are of the form Plil P2i2 P;3 Pj(‘ P5f5 Péﬁ where
exponents are 0, 1, or 2, and the first nonzero exponent is1. Therest of the splits are
aliased t03°- 1= 3°-1 = 728 other splits. Furthermore, the aliases of a split Ware
products of the formw (Pl'l P2i2 Pgif* P;“ P5i5 Pbiﬁ ) where the exponents i; are consent to range
over al 3° = 729 combinations of 0, 1, or 2. Therefore, thereare 1 +3' + 3% + 3 + 3=

121 sets of adliasesin addition to the aliases of | (Dehlert 2000), noting that q—s—1=4.

In result, each of the 121 seats of aliases has 729 names of interactions.
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6.2.1 Analysisof Three-level Fractional Factorial Design

When the design deals with complex aliasing, it is very complicated to separate
the large number of aliased effects and to interpret their significance. Therefore, asin
Case Study - 2, thiskind of method can be used for screening designs. They are used to
estimate the main effects but not their interactions. For this reason, using Minitab, | can
determine the significance of the main factors. The simple analysis starts with the main
effects plot. A main effects plot is a plot of the means of the response variable for each
level of afactor, which allows me to obtain a general idea of the possibly important main
effects. | showed the locations of main effects for PV C insulation for electric wire in

Figure 6.3.

Figure 6.3 Main Effects Plot of Strength Embrittlement Temperature

Main Effects Plot (data means) for Embrittlement Tem perature

A B E
-104
-20 \ -
-30 ‘\ \
T T T T T T T T T
@ 0 1 2 0 1 2 0 1 2
] C D F
S -10-
Q
)
)
= -20] P —— *r—
o \. ———O@ —@
S -30-
)
2 T T T T T T T T T
0 1 2 0 1 2 0 1 2
H
-104
-207 e — P — [ S— °
./ — —
-30
T T T T T T T T T
0 1 2 0 1 2 0 1 2

57



Analysis of the above main effect plots indicates that a main effect occurs when the mean
response changes across the levels of afactor. Therefore, | can identify the strength of the
effects of embrittlement temperature across factors by using the main effects plots as

stated below.

Factors A and B decrease when they move from the high leve to the low level of
embrittlement temperature.

Factors D, E, F, H, and J remain practically the same when they move from the
high level to the low level of embrittlement temperature.

Factors C and G increase when they move from the low level to the intermediate
level and then decrease from the intermediate level to the high level of

embrittlement temperature.

My analysis concluded that the levels of factors D, E, F, H, and J affect the responsein a
similar way. It seems no visible main effect is present, since the lines are almost parallel
to the x-axis. On the other hand, the levels of factors A, B, C, and G appear to affect the
response differertly. Thelevels of A and B factors have larger difference in the vertical
position of the plotted points, that is, steeply slopes. Consequently, the levels of these
factors appear to have a greater affect on the response embrittlement temperature. | also

showed the levels of each factor’s mean values that are given in Table 6.2.
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Table6.2 Mean values of each levelsof factors

Mean values of factor A

I ndi vi dual 95% Cl's For Mean Based on
Pool ed St Dev
Level N Mean St Dev R I I e
0 9 -9.556 12.778 (----- R )
1 9 -23.778 10.022 (------ Foeoao- )
2 9 -34.667 5.454 (----- R —— )
e o o o .
-40 -30 -20 -10
Mean values of factor B
Level N Mean St Dev Fo-eoo---- L L e
0 9 -11.78 14.62 (------- Koo - )
1 9 -24.00 11.67 (------- LR )
2 9 -32.22 7.89 (------- R )
[ F F Fomm e oo -
-40 -30 -20 -10
Mean values of factor E
I ndi vi dual 95% Cl's For Mean Based on
Pool ed St Dev
Level N Mean StDev ------ R R R +---
0 9 -23.22 13.74 (---------------- R )
1 9 -23.33 14.47 (---------------- R )
2 9 -21.44 15.80 R T )
------ S
-30.0 -24.0 -18.0 -12.0
Mean values of factor C
I ndi vi dual 95% Cls For Mean Based on Pool ed
St Dev
Level N Mean St Dev e o S S
0 9 -21.44 20.04 (------------- R )
1 9 -20.89 14.76 (------------- R )
2 9 -25.67 3.91 (------mmm - R )
e ao o o oo
-35.0 -28.0 -21.0 -14.0
Mean values of factor D
I ndi vidual 95% Cls For Mean Based on
Pool ed St Dev
Level N Mean StDev ------- L L L +- -
0 9 -20.22 20.10 (---mmmmmmm - - R )
1 9 -23.89 10.89 (---------------- R )
2 9 -23.89 10.83 (---------------- R )
e - oo oo oo +--
-30.0 -24.0 -18.0 -12.0
Mean values of factor F
I ndi vidual 95% Cls For Mean Based on

Pool ed St Dev
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Level N Mean StDev ------ Fommm e - S oo $---
0 9 -22.11 14.17 CE T E T Koo )
1 9 -22.44 14.77 T —— oo )
2 9 -23.44 15,17 (---------m---nn- Ko )
------ T T L
-30.0 -24.0 -18.0 -12.0

Mean values of factor G

| ndi vi dual 95% Cls For Mean Based on Pool ed

St Dev
Level N Mean St Dev R SRR TR R Foo---- Foo---- e
0 9 -25.78 14.57 CEEEEET I EEEEE LR )
1 9 -20.33 14.03 (------------- R )
2 9 -21.89 14.95 (-------------- R L )
e e oo - - [ IS — [ IS — [
-35.0 -28.0 -21.0 -14.0

Mean values of factor H

I ndi vidual 95% Cls For Mean Based on
Pool ed St Dev

Level N Mean StDev ------ Foommo - Foommo - Fommmo- - +---
0 9 -22.22 14.80 (mmmmmmmmm e F oo )
1 9 -23.78 13.54 (------e-m-a---- LSRR )
2 9 -22.00 15.68 (mmmmmmmmmm s L LR )
------ T
-30.0 -24.0 -18.0 -12.0

Mean values of factor J

I ndi vidual 95% Cls For Mean Based on
Pool ed St Dev

Level N Mean StDev ------ R e S TSR +---
0 9 -21.67 15.84 (----------ee - R LT )
1 9 -23.78 13.67 (--------------- B )
2 9 -22.56 14.49 (- - R )
------ I S eI R
-30.0 -24.0 -18.0 -12.0

Although a table of means and a plot of main effects provide useful information,
in order to confirm the results | need to use a more formal analysis of the data. Therefore,
once again | can use Minitab to obtain statistically significant analysis of the data. The

analysis of variance of PVC insulation data is as follows:
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Figure 6.4 Analysis of variance of PVC insulation
Response Surface Regression: response versus A, B,E,C,D,F, G, H, J

The anal ysis was done using coded units.

Estimat ed Regression Coefficients for response

Term Coef SE Coef T P
Const ant 2.2222 2.8034 0.793 0.439
A -12. 5556 0.9017 -13.925 0.000
B -10. 2222 0.9017 -11.337 0.000
E 0. 8889 0.9017 0.986 0.338
C -2.1111 0.9017 -2.341 0.032
D -1.8333 0.9017 -2.033 0.058
F - 0. 6667 0.9017 -0.739 0.470
G 1.9444 0.9017 2.157 0.046
H 0.1111 0.9017 0.123 0.903
J - 0. 4444 0.9017 -0.493 0.628

S=3.85 RSq=952% RSq(adj) = 92.7%

Anal ysis of Variance for response

Sour ce DF Seq SS Adj SS Adj M F P

Regr essi on 9 4953.22 4953.22 550.358 37.61 0.000
Li near 9 4953.22 4953.22 550.358 37.61 0.000

Residual Error 17 248.78 248.78 14. 634

Tot al 26 5202.00

In order to determine which factors are significantly related to the response, | can
use the least squares regression to analyze the variability of data. The Figure 6.4
provides a statistical summary of the main effects. The main effects A, B, C, and G are

significant at the 0.05 a-level. Meanwhile the main effects D, E, F, H, and J do not

appear to contribute to the response at the 0.05 a-level. Thisresult confirms my earlier
conclusion completed by using the main effect plots. The graphical analysis of the effects
allows me to visualy identify the important effects, while the statistical analysis confirms
which factors are significantly related to the response.

My next step is to determine interactions effects that are significant. In order for
an interaction to be significant, at least one of its parent factors should be significant (Wu

2000). Thisfundamental principle for factorial effectsis called the effect heredity
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principle. Since four of the parent factors are identified as significant, | cannot rule out
any of the interactions between the main effects. Hence, the analysis can start with
interaction plots as shown in Figure 6.5. This graph displays a full interactions plot
matrix. Each pair of factors provides the summary below:

A and B: Both of the rows indicate that factors A and B interact.

Row 1: The lines for the three levels of factors A decrease but at different rates

while the level of factor B increases.

Row 2: The lines for the three levels of factors B decrease but at different rates

while the level of factor B increases.

A and C: Both of the rows indicate that factors A and C interact.

Row 1: The level O decreases, the level 1 first increases then it decreases, and the

level 2 first decreases and then increases for factor A, whilethe level of C

increases.

Row 2: Thelevel 0 and the level 1 decrease at different rates, and the

level 2 stays about the same as C increases, while the level of A increases.

B and C: Both of the rows indicate that factors B and C interact.

The movement of the levelsof B and C is amost identical to the movement of the

levelsof Aand C.

Aand G-Band G-Cand G:

All three lines for each of the factor interactions are approximately parallel.

The factor G does not appear to be interacting with factors A, B, and C.
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Figure 6.5 Interaction Plot of Embrittlement Temperature

Interaction Plot (data means) for Embrittlement Temperature
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In addition to estimating the eight degrees of freedom in the main effects A, B, C,
and G, there are 26 — 8 = 18 degrees of freedom left for estimating two-factor interactions
and the error term. Each two-factor interaction has 4 degrees of freedom. Consequently,
there will not be enough degrees of freedom for estimating six of the two-factor
interactions using ANOVA. An aternative method is to decompose each of the main
effects into linear and quadratic components: linear versus linear, linear versus quadratic,
quadratic versus linear, or quadratic versus quadratic. Note that if yo, y1, and y-
correspond to the observations at level 0, 1, and 2, the linear effect is defined as

Y- )N
and the quadratic effect as

(Y2 +Yo) - 2V1.
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Furthermore, the linear and quadratic effects are represented by two mutually
orthogonal vectors:

A =%(- 10,1, Aq =%(l -2,-)

V2 and /6 arethe scaling constants and they will be dropped in the table for simplicity
(Wu 2000). Therefore, | can apply the formulas above to the columns of A, B, C, and G
in Table 6.1 to facilitate A, Aq, B, By, Ci, Cqand Gy, G4. For instance, | can obtain the
column of AB; by multiplying Aj and Aq. The rest of the two-way interactions are

obtained similarly. The decomposed main effects are given in Table 6.3.

Table 6.3 The decomposition of Main Effects

A° A, BB B, C C, G G, (AB) (AC), (AG), BC, (BG), (CG)
-1 1 -1 1 -1 1 -1 1 1 1 -1 1 1 1
-1 1 -1 1 -1 1 0 -2 1 1 2 1 0 0
-1 1 -1 1 -1 1 1 1 1 1 -1 1 -1 -1
-1 1 0 -2 0 -2 -1 1 0 0 -1 0 0 0
-1 1 0 -2 0 -2 0 -2 0 0 2 0 0 0
-1 1 0 -2 0 -2 1 1 0 0 -1 0 0

-1 1 1 1 1 1 -1 1 -1 -1 -1 1 -1 -1
-1 1 1 1 1 1 0 -2 -1 -1 2 1 0 0
-1 1 1 1 1 1 1 1 -1 -1 -1 1 1 1
0 -2 -1 1 0 -2 1 1 0 0 0 0 -1 0
0 -2 -1 1 0 -2 -1 1 0 0 0 0 1 0
0 -2 -1 1 0 -2 0 -2 0 0 0 0 0 0
0 -2 0 -2 1 1 1 1 0 0 0 0 0 1
0 -2 0 -2 1 1 -1 1 0 0 0 0 0 -1
0 -2 0 -2 1 1 0 -2 0 0 0 0 0 0
0 -2 1 1 -1 1 1 1 0 0 0 -1 1 -1
0 -2 1 1 -1 1 -1 1 0 0 0 -1 -1 1
0 -2 1 1 -1 1 0 -2 0 0 0 -1 0 0
1 1 -1 1 1 1 0 -2 -1 1 -2 -1 0 0
1 1 -1 1 1 1 1 1 -1 1 1 -1 -1 1
1 1 -1 1 1 1 -1 1 -1 1 1 -1 1 -1
1 1 0 -2 -1 1 0 -2 0 -1 -2 0 0 0
1 1 0 -2 -1 1 1 1 0 -1 1 0 0 -1
1 1 0 -2 -1 1 -1 1 0 -1 1 0 0 1
1 1 1 1 0 -2 0 -2 1 0 -2 0 0 0
1 1 1 1 0 -2 1 1 1 0 1 0 1 0
1 1 1 1 0 -2 -1 1 1 0 1 0 -1 0




As aresult of my table, | can use regression analysis to identify the two- factor

interactions that are significant.

Figure 6.6 Regression Analysisof factors Main Factorsand Two-way |nteractions

Regression Analysis: response versus Al, Aq, ...

* (BOIIl is highly correlated with other X variabl es

* (BOIIl has been renbved fromthe equation.

The regression equation is

response = - 22.7 - 12.6 Al + 0.556 Aq - 10.2 Bl + 0.667 Bg - 0.278 O
- 0.278 Cg +1.94d - 1.17 &g + 3.67 (AB)Il - 0.00 (AQII
+ 0.222 (AGIIl - 0.083 (BGII + 0.583 (&)1

Predi ctor Coef SE Coef T P

Const ant -22.6667 0.5115 -44.31 0.000

A -12.5556 0.6265 -20.04 0.000

Aq 0.5556  0.3617 1.54 0.149

Bl -10.2222 0.8859 -11.54 0.000

Bq 0. 6667 0.4176 1.60 0.134

d -0.2778 0.8859 -0.31 0.759

(@) -0.2778 0.4176 -0.67 0.518

d 1.9444  0.6265 3.10 0.008

(€1 -1.1667  0.3617 -3.23 0.007

(AB) 11 3. 667 1.253 2.93 0.012

(AQ 11 -0. 000 1. 253 -0.00 1.000

(AG I 0.2222 0.4430 0.50 0.624

(BGII -0.0833 0.7673 -0.11 0.915

gcoll! 0.5833 0.7673 0.76 0.461

S =2.6578 RSq=982% RSq(adj) = 96.5%

Anal ysi s of Variance

Sour ce DF SS M5 F P
Regr essi on 13 5110.17 393.09 55.65 0.000
Resi dual Error 13 91. 83 7.06

Tot al 26 5202.00

It appears that BC;; component is not included in the analysis. Most computer
programs will print out an error message indicating that they are unable to estimate the
coefficients of the collinear variables. The collinearity occurs when the relative
movements of one variable will be matched exactly by the relative movement of the other

variable (Studenmund 2006). As| mentioned earlier via interactions plot in Figure 6.5,
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the two-way interactions AC;; and BC;; are completely explained by each other’s
movements. Asaresult, | can exclude one of the redundant interactions from the model.
Also, the main effect C was found significant as shown in Figure 6.4, but when |
reduced the model, the factor C became highly insignificant. Recall that C is aiased with
AB, therefore when using Minitab to estimate C, it also estimates the interaction effect
between A and B. The result of adding the two-way interaction of AB in the reduced
model caused components of C to become insignificant. Consequently, since the main
effects A and B and their interaction AB; are highly significant, it is appropriate to remove
the components of C from the data. The components A, B;, G, Gq, and AB appear to be
significant at the 0.05 a-level. At this point, | can analyze the response surface by fitting

the datain a second-order modd!.

Figure 6.7 The Final Model

Response Surface Regression: response versus A, B, G

The anal ysis was done using coded units.

Esti mat ed Regression Coefficients for response

Term Coef SE Coef T P

Constant -20.333 0.8665 -23.465 0.000

A -12.556 0.6127 -20.491 0.000

B -10.222 0.6127 -16.683 0.000

G 1.944 0.6127 3.173 0.005

GG - 3.500 1.0613 -3.298 0.003

A*B 4.083 0. 7504 5.441 0.000

S = 2.600 RSg = 97.3% R-Sg(adj) = 96.6%

Anal ysi s of Variance for response

Sour ce DF Seq SS Adj SS Adj Ms F P

Regr essi on 5 5060.08 5060.08 1012.02 149.75 0.000
Li near 3 4786.50 4786.50 1595.50 236.09 0.000
Squar e 1 73.50 73.50 73.50 10.88 0.003
I nteraction 1 200. 08 200. 08 200. 08 29.61 0.000

Residual Error 21 141. 92 141. 92 6.76

Tot al 26 5202.00
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Esti mat ed Regression Coefficients for response using data in uncoded units

Term Coef
Const ant 1. 08333
A -16. 6389
B -14. 3056
G 8. 94444
GG -3.50000
A*B 4.08333

Figure 6.8 Contour plot of Embrittlement Temperature

Contour Plots of response

A
00 0.5

-0.5

G*A

response

< -40

-40 - -30
M 30- -2
MW -2 - -10
B -0 - 0
[ ] > 0

Hold Values
A -1
B -1
G -1

My best regression model to describe the relationship between the embrittlement

temperature and the factors is

-20.33- 12.56% 5 - 10.22Xg +4.08X 5 Xg +1.94X5 - 3.50xé
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A contour plot can show only two factors at atime, for that reason each factor is
held at a constant level. In order to avoid the embrittlement temperature of PVC
insulation of an electric wire, the analysis of response surface indicates that the
plasticizers DOA (A) and n-DOP (B) should set to level (-1, 0) and carbon (G) should set

to level (O, 1).
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6.3 The Conclusion of the Three-L evel Fractional Factorial Design

The factorial designs are widely used in experiments when the curvature in the
response surface is concerned. All treatment factors have 3-levelsin the three-leve
factorial design. This design requires many runs, as a result, the confounding in blocks
can be used. Also, the fractional factorial design can be an aternative approach when the

number of factors gets large.

Thethree-level fractional factorial design partitions the full 39 runs into blocks,
but it only runs one of the blocks. This design is more efficient, it allows collecting
information on the main effects and on the low-order interactiors. The one problem with
three-level fractional factoria is that when number of factors is large, it becomes very
complicated to separate the aliased effects and to interpret their significance. For this
reason, when ¢ is large, most of the time this kind of design is used for screening designs.
After an appropriate design is conducted, the response surface analysis can be done by
any statistical computer software and then statistical analyses can be applied to draw the

appropriate conclusions.
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Appendix -

Yield

17.4

17
19

17.4

12.6

18.6

22.4

21.4

14
24

15.6

13
14.4

22.6

23.4

20.6

22.6

13.4

20.6

15.6

21
17.6

D2 AB AC AD BC BD CD

D A2 B2 C"2

C

141
-14

14
-1.4

14
-14

Design Matrix for analyzing the stationary point for response variable Yield.

Oooooooooooooom
Ooooooooooooomo
000000000000#10.00
00000000000%000
OOOOOOOOOOMOOOO
000000000r10_00000
OO0 O0OO00DWVWOVWWOWJTOOOOOO
N N
OO0 O0O0DVWUOWT OVWOOOOO0OOo
N =N
OO0 O00DWOVWTOWWOWOOOOOOo
N N -
OO0 O0O0OJTOVWWOWWOWOOOOOOo
N AN A -
OOOOMOOOOOOOOOO
000%00000000000
00”000000000000
0%0000000000000
NMOOODOO0OO0OO0OO0OO0OO0OO0O OO0OOo
N N NN N

Il

X

X

The matrix multiplication of X transposes and X
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Appendix - 11

xx)*

Xy =

o4 0 O O o0 -0 -0 -0 -0 O 0 0 0 0 0
0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 00l O O O 0O 0 0 0 0 0 0 0
0 0 0 0 0.1 0 0 0 0 0 0 0 0 0 0
-0 0 0 0 0 01 -0 -0 -0 0 0 0 0 0 0
0 0 0 o O -0 01 -0 -0 O 0 0 0 0 0
-0 0 0 0 0 -0 -0 01 -0 0 0 0 0 0 0
-0 0 0 0 0 -0 -0 -0 0.1 0 0 0 0 0 0
0o 0 0 O O O 0 o0 o0 01 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.0625 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.063 0 0 0
0o 0 0 O O O 0 0 0 O 0 0 0.063 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.063 0
0 0 0 0O O O 0 0 0 O 0 0 0 0 006

Inverse of matrix of X'X.

463.800 21.448 | b0
26.359 1.318 | bl
53.809 2.691 | b2
42.270 2.114 | b3
25.208 1.260 | b4
374.373 b - 0.420 | b1l
358.378 -1.580 | b22
358.778 -1.530 | b33
363.577 -0.930 | bas
12.000 0.750 | b12
4.800 0.300 | b13
2.800 0.175 | b14
9.600 0.600 | b23
7.600 0.475 | b24
-1.200 -0.075 | b34

Theresult forb ’s using the matrix multiplication b =(X'X)*X'y
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