

Application of Genetic Algorithms to a
Multi-Agent Autonomous Pilot for Motorcycles

Poornima Konanur
Department of Computer Science
Indiana University of South Bend

E-mail Address: npoornima@iusb.edu
Date: May 10th 2005

Thesis submitted to the faculty of the
Indiana University South Bend

in partial fulfillment of requirements for the degree of

MASTER OF SCIENCE

in

APPLIED MATHEMATICS & COMPUTER SCIENCE

Advisor

Dr. Dana Vrajitoru
Department of Computer Science

Committee:

Dr. James Wolfer
Dr. Morteza Shafii-Mousavi

 II

©2005

Poornima Konanur
All Rights Reserved

 III

Abstract

The Physics behind motorcycle driving are well understood and implemented by studying

the laws of kinetics and kinematics behind the operation of the single track motor vehic le.

In this thesis I worked with an application which is currently using OpenGL and

implements an interactive motorcycle simulator which is based on the laws of physics. This

application involves a multi-agent pilot capable of autonomously driving the vehicle using some

configurable equations.

I have applied genetic algorithms to find suitable values for the parameters of the pilot by

testing it in a non graphical environment, and I visually verified the results of the genetic

algorithms with the graphical interface application. The performance of the pilot derived by the

genetic algorithms is also compared with the manually configured pilot.

 IV

Acknowledgements

First of all I wish to express my sincere gratitude to my advisor Dr. Vrajtoru during this

work. This work would not have been possible without support and encouragement of

Dr. Vrajtoru, under whose supervision I chose this topic and began thesis.

I would like to acknowledge the help of Dr. Wolfer and Dr. Shafii Mousavi for their

support and guidance during the thesis. I would like to thank Dr. Hakimzadeh for help with the

experimental setup and general advice.

Finally, I would like to dedicate this thesis to my parents, my husband Subbu, and

daughter Raksha for their love, patience, and understanding; they allowed me to spend most of

the time on this thesis for past couple of months.

 V

Table of Contents

1. Introduction 1

2. Literature Review 3

3. Motorcycle Modeling and Autonomous Pilot 6

3.1 The Vehicle Control and Degrees of Freedom 6

3.2 STV Motion and Control 7

3.3 Perceptual Information 12

3.4 Multi-agent Pilot 14

4. Pilot testing and evaluation 20

4.1 Application Details from the previous Project 20

4.2 Testing for completion of the circuit 21

4.3 Testing for Different Crashing Conditions 23

4.4 Improvements to the Graphical Application 24

5. Application of Genetic Algorithms (GA) 25

5.1 Introduction to GA 25

5.2 Comparison of Natural and GA Terminology 26

5.3 Operation of GA 27

5.4 Genetic Algorithm Explained with an example 28

5.5 Applications of Genetic Algorithms 34

5.6 Genetic Representation of the Motorcycle Pilot 35

6. Comparison Study 38

7. Conclusions 42

8. References 43

 VI

List of Tables

Table 1. Initial population 29

Table 2. Reproduction results 31

Table 3. Mutation operation 33

Table 4. New population and fitness after crossover and mutation 33

Table 5. Statistics for two human players 38

Table 6. Average result of 100 trails 39

Table 7. Average fitness functions in 100 trails for 100 generations 39

Table 8. Verification of GA parameters in motorcycle GUI application 41

 VII

List of Figures

Figure 1. A motorcycle with control units and degrees of freedom 6

Figure 2. STV coordinate system 7

Figure 3. Forces and quantities involved in lateral movement 12

Figure 4. Perceptual information used by the autonomous pilot 13

Figure 5. The test circuit 21

Figure 6. The main application window displaying the vehicle 22

Figure 7. Graph of the function u(x, y) = (x-7)2 + (y-3)2 29

Figure 8. Main application screen GA settings 37

Figure 9. Running options settings 37

Figure 10. Evaluation options settings 37

Figure 11. Running options settings 37

Figure 12. Average fitness in steering and leaning mode with the GA 40

 1

1. Introduction

Many real - world and scientific applications make use of autonomous techniques, like

autonomous robots (Al-Shibabi, Mourant, 2003; Sukthankar, Baluja, Hancock, 1998), automated

flight control (Abdelzaher, Atkins, and Shin, 2000; Atkins, Miller, VanPelt, Shaw, Ribbens,

Washabaugh, and Bernstein , 1998; Gavrilets, Frazzoli, Mettler, Piedmonte, and Feron, 2001),

traffic control (Kelly, 1997; Nagel, 1996; De Mot , Feron, 2003; Mourant , Marangos, 2003).

The intelligent agents represent a modern approach in artificial intelligence and they have

been extensively utilized for many applications. Several approaches have applied multi-agent

models to the simulation of autonomous drivers and this application follows similar ideas. A

related research direction focuses on traffic flow simulation or trajectory planning.

The paper that motivated my interest is (Vrajitoru, Mehler, 2004) in which they describe

a motorcycle simulation implemented using the OpenGL library and providing real time

interaction for a human player. They developed a visual interface that allowed a human user to

change the point of view and drive the vehicle which in this case is a motorcycle. This application

currently includes an autonomous pilot that can be toggled on and off and also a test circuit that a

human or an automatic driver must attempt to complete. The autonomous pilot is a multi-agent

probabilistic application with a separate configuration interface where each process is acting on

one of the control units of the vehicle like gas, brakes, the handlebars (equivalent to the steering

wheel for a car). The agents use some of the information about the current status of the vehicle to

make a decision about an action to be taken on the control units they are in charge of. The

information includes both status data, like the current speed, and perceptual data, like the visible

distance on the road in the direction of movement, the lateral distance to the border of the road

and the current slope.

 2

The genetic algorithms (Holland 1975; Goldberg, 1989) are widely used learning and

optimization method with many applications especially fields related to our current research, in

particular to robotics (Sedighi, Ashenayi, Manikas, Wainwright, Tai, 2004).

My goal in this project was to apply genetic algorithms (GAs) to configure the agents

composing the autonomous pilot. Thus, each agent has a behavior determined by a set of

equations involving some coefficients and thresholds, as I sha ll briefly describe in Section 3. All

of these are currently configured by a human player by trial and error, which is a time consuming

and imprecise process.

By applying the GAs to find the optimal values for all of the coefficients involved in the

equations of the agents, the process of deriving a good behavior for the autonomous pilot can be

made automatic. In the same time I achieved a better performance than it is possible by simply

adjusting these parameters by hand.

To better explain the research topic, Section 2 presents the literature survey of the bicycle

dynamics and other related topics. Section 3 introduces the physical model of the motorcycle

followed by the control units of the motorcycle. Section 4 explains one major contribution of this

thesis which is the automatic testing of the circuit completion and detection of various crash and

failure condit ions. Section 5 presents the implementation of the genetic algorithms to apply them

to the current problem. Section 6 introduces the experimental results and a comparative study of

the GA with the previous pilot. Finally, Section 7 presents some conclusions.

 3

2. Literature Review

The need for autonomy for vehicles arises from the difficulty of always having a human

operator controlling the system. The interest in multi agent autonomous pilots has been rapidly

increasing in last few years. In a research paper (Mohan, Busquets, Lopez de Màntaras, Sierra,

2004) considers a multi-agent pilot which in this case operates a robot capable of navigating in

inaccessible environments which are usually unknown and unstructured (Mars, Moon). The pilot

functions as an autonomous agent in a complex multi-agent architecture for the control and

navigation of an autonomous robot. In this architecture, various agents are responsible for

different tasks, and they might have to compete and cooperate for a successful completion of a

particular navigation mission. They proposed a general architecture that uses a bidding

mechanism to control the robot. In this case, they used it to coordinate the three systems that

control the robot, which are navigation, vision, and pilot.

The first project in the field of bicycle dynamics (Olsen and Papadopoulos, 1988) was

created to apply modern scientific techniques to the engineering problems of the bicycle . They

applied the mathematics to include the important aspects of geometry and mass replacement.

They selected to work on a basic bicycle model that had rigid knife edged wheels, a rigid rear

frame including a rigidly mounted and immobile rider, and a rigid steer able front fork, including

front wheel, stem, and handlebar. The equations they obtained were not as straightforward as

mass or spring fitness, but rather involved functions of bicycle velocity, frame geometry, and

various characteristics of the bicycle and rider’s distribution of mass and also the leaning affects

on steering and vice versa.

Another project taken by Cornell Bicycle Research Project (Fuchs, 1998) considered

minimizing the disturbing effects of steady crosswinds on single -track vehicles. The equation to

calculate the equilibrium location of the center of pressure for zero steering angles in crosswinds -

 4

the ‘trim equation’ - has been derived. Using it, a single -track velomobile designer may trim their

vehicle to achieve good handling characteristics under certain conditions (angle of attack); the

torque that has to be exerted by the rider onto the handlebar may be minimized. But the fact that a

vehicle is in trim at certain angles of attack does not assure safe handling in any situation that

may be encountered in windy conditions on the street. For the first time it was mathematically

shown that static stability of single -track vehicles in crosswinds is achieved when the center of

pressure is in front of the center of mass. In this research they have not considered the dynamics

of transition from one state of crosswind influence to another state of cross wind influence.

Fajans (2000) considered centrifugal forces that will throw the bike over the side if the

rider steers the handlebars in the opposite direction of the desired turn without first leaning the

bike in to the turn. Leaning the bike into the turn allows for the gravitational forces to balance the

centrifugal forces, leading to a controlled and stable turn. Thus steering a bike involves a

complicated interaction between centrifugal and gravitational forces, and torques applied to the

handlebars, all edited by the bike geometry.

The genetic algorithms have been applied to local obstacle avoidance of a mobile robot in

a given search space (Sedighi, Ashenayi, Manikas, Wainwright, Tai, 2004). In this research they

have tried to derive not only a valid path but also an optimal one. The objectives were to

minimize the length of the path and the number of turns taken by the robot to complete the path.

They have also implemented a method that allows a free movement of the robot in any direction

so that the path planner can handle complicated search spaces.

The research for this thesis is a continuation of the project presented in (Vrajitoru,

Mehler, 2004). Starting from the existing model for the motorcycle and the pilot, we apply

genetic algorithms to configure the autonomous pilot.

 5

This paper introduces an application that simulates a motorcycle that can be driven by

both a human player and an autonomous pilot. The application is implemented based on the

physical equations describing the vehicle’s attributes, motion, and road behavior. This application

aims at controlling the vehicle in a non deterministic way inspired from the behavior of a human

driver and using similar perceptual information to make decisions.

The goal of this application is to simulate the behavior of a human driver under various

circumstances on the road.

The application presented in this paper (Vrajitoru, Mehler, 2004) is developed using the

ideas and concepts that can be observed in game engines. It is implemented using the OpenGL

library and provides real-time interaction for a human player. The visual interface of the

application allows the human user to adjust the point of view and to drive the vehicle, which in

this case is a motorcycle. The application includes an autonomous pilot that can be toggled on

and off as well as a test circuit that the human or autonomous driver must attempt to complete.

The autonomous pilot is a multi-agent probabilistic application with a separate configuration

interface where each agent is an independent process acting on one of the control units of the

vehicle, as for example, the gas, the brakes, the handlebars, or the steering wheel. The agents use

some information about the current status of the vehicle to make a decision about an action to be

taken on their respective control units. This information includes both status data, like the current

speed, and perceptual data, as the visible distance on the road in the direction of movement, the

lateral distance to the border of the road, and the current slope. The performance of the

autonomous pilot is compared with the performance of a trained human.

 6

3. Motorcycle Modeling and Autonomous Pilot

In this section we introduce the physical model of the motorcycle and the multi-agent

autonomous pilot.

3.1 The Vehicle Control and Degrees of Freedom

The motorcycle is a single track vehicle (STV) modeled as a system of several units with

various degrees of freedom as shown in Figure 1. The coordinate system relative to the

motorcycle is also illustrated. The origin of the system is in the center of the motorcycle at the

ground level.

Figure 1. A motorcycle with control units and degrees of freedom

The motorcycle has six degrees of freedom namely :

• Rotation of the wheels around their local axes which are parallel to Oz.

• The rotation of the handlebar and the front wheel around the fork axis (steering).

• The front and back transla tion along the suspension axes. These components are not

taken into account by our system.

• The rotation of whole vehicle around the Ox axis in the relative system of coordinates

(leaning).

 7

The driver can control the vehicle with five the control units which are the handlebar

(steering), leaning of the vehicle laterally, the throttle , and also the two brakes namely , front and

rear. The state of the STV is described at any moment by the current position of the center of the

vehicle on the road and the current direction of movement which can be described as a vector or

as an angle in the (x,z) plane plus the slope, which is in general determined by the road. The

model must also include the degrees of freedom for each of the control units. These components

are in general defined relative to the STV’s internal system of reference.

3.2 STV Motion and Co ntrol

The STV is modeled as a reduced state system of continuous variables. The generalized

coordinates at a particular moment are given by

 q = (s, a, ?) T (1)

where s(t) = (x(t),z(t)) represents the spatial position of the STV,

 ? is orientation angle determining the direction of movement d = (cos?, sin?),

 a is the leaning angle .

The state of the vehicle also involves F, the steering angle. The constraint imposed on this angle

is –p/3 = F = p/3. The Figure 2 shows these angles and coordinates.

Figure 2. STV coordinate system

The vertical components of both s and d are determined by the road altitude and slope at

the given spatial position and also by the vehicle orientation. In this thesis I have considered the

 8

road to be close enough to the sea level such that the gravitational acceleration is the constant

g = 9.8m/s2 and the altitude of the vehicle has no noticeable effect on the motion of the vehicle.

Let s (s, d) be the angle made by the contact line of the vehicle with the (x, z) plane, as

determined by its position and orientation.

The driver’s input to the system can be represented as follows.

 u = (t, ßf, ßr, F, a) (2)

where t is the throttle opening determining the acceleration in the direction of movement d.

 ßf, ßr are the front and rear brakes respectively , and

F and a are the steering and leaning angles respectively.

A nonholonomic system is one whose movement at any moment cannot instantly change

direction, but is subject to certain constraints. In our case, the nonholonomic constraints arise

from the fact that the motorcycle moves in the direction of wheels which is perpendicular to their

main axis. A change in direction is not instantaneous, but determined by some actions (steering

and leaning). This change has a limited range given by the maximum degree of freedom of the

handlebar and maximum leaning that doesn’t cause the vehicle to fall.

The nonholonomic constraints can be expressed by following, where b is the distance

between the two contact points of the wheels on the ground.

 -x'sin? + z'cos? = 0 (3)

 bcosF ?' - sin(F+?)x' + cos(F+?)z' = 0 (4)

where the single and double quotes are the standard notations for the first and second derivatives

respectively with respect to the time.

 9

Equation 3 represents the fact that the STV moves in the direction of the vector d.

Equation 4 allows us to compute the change in orientation due to steering. In particular, if –p/2 =

F = p/2, (heuristic) we can compute the change in the orientation angle due to steering as

 ? ? = (sin (F+?) ? x - cos (F+?? z))/bcos F (5)

Let v = s' be the momentary speed or velocity in the direction of movement, and a = v' =

s? the momentary acceleration in the direction of movement. We implemented the motion of the

vehicle using Newtonian mechanics.

Let us consider the following notations:

_ s(t) the spatial position of the object at time t,

_ v(t) the momentary speed or velocity, v(t) = s '(t),

_ a(t) the momentary acceleration, a(t) = v' '(t) = s? (t).

By applying Newton’s laws of motion, we can derive the following system of equations

to describe the spatial position of the motorcycle at the moment t +? t by

 s(t +?t) = s(t)+ ?s (6)

 v(t +?t) = v(t)+ ?v (7)

 ?s = d (v?t + a ?t 2/ 2) (8)

 ?v = a ?t

In our case, the acceleration is defined by the throttle which determines the amount of

fuel supplied to the engine, by the force applied to the brakes, by the friction force, and by the

gravitational force when the road is not flat. The system is set in such a way that a given amount

of gas supplied to the engine can only lead to accelerating the vehicle up to a speed limit

depending on the amount of gas. This simulates the engine limitations of a real vehicle. The

brakes do not act simply as a negative acceleration but also have the effect of adding to the

friction and drag forces which otherwise just depend on the air and ground and are relatively very

small.

 10

 a = t + g sins – k g coss - kb(Bf + Br) – D v2 (9)

In this above equation,

g = 9.8 m/s2 is the gravitational acceleration at the sea level,

k = coefficient of friction,

kb = coefficient of friction for the brakes,

D = coefficient of drag, defined as the sum of the air resistance, the force applied to the

brakes, and the engine brake, as follows

 D = ka + kd(Bf + Br) + k e (10)

where ka is the air resistance, kd is the coefficient of drag for the brakes, and k e represents the

engine brake.

These forces mentioned above cause the speed of the vehicle to become constant after a

while for any given throttle opening t as long as the road conditions are stable. Along with the

friction force, they prevent a resting vehicle from going downhill if the slope s is not null, and

prevent the speed from increasing indefinitely due to gravitation in the direction of movement

when the vehicle is going downhill.

In this model of the motorcycle we also consider that when the motorcycle leans more

than a threshold, the centrifuge force cannot compensate for the gravitation anymore and the

vehicle falls down (crashes). The threshold depends on the speed, a higher speed allowing the

vehicle to lean further without crashing.

Leaning Equations

The first force that we are going to consider that affects the change in direction of the vehicle due

to leaning is the centrifuge force. This force is defined by

 Fc =m? 2r (11)

 11

where ? is the angular speed, and r is the radius of the circle on which the object is

turning. If v is the horizontal speed, then we can define the angular speed as ? = v/r, so

the centrifuge force is equal to

r

v
mFc

2

= (12)

A second force that interacts with the vehicle in the lateral movement is the lift due to

friction with the air. We can adapt an equation taken from airplane wing simulation that computes

the lifting force FL is given as

 LrefL CSvF 2

2
1

ρ= (13)

In this equation ρ is the air density, that we can consider to be approximately ρ =

1.22145kg/m3 at 0 altitude.Sref is the reference area, that we can compute as the horizontal

projection of the vehicle. If Sv is the total porting lateral surface of the motorcycle and the driver,

Sh the porting horizontal surface of the motorcycle, and a is the angle made by the vertical axis of

the motorcycle with the horizontal plane, then

 Sref = Sv cosa + Sh sina (14)

The last component of the lateral movement is the gravitational force itself, which has a

norm equal to g m. From this force, we have to subtract the lifting force first. Starting from the

same angle a, the resulting gravitation force which is vertical is decomposed in a force along the

vertical axis of the motorcycle and another one that is normal to the motorcycle. The rotation will

be determined by the component that is perpendicular to the motorcycle axis. This component,

that we call central gravitation and denote by Gc, is given by

 Gc = (g m – FL) sina (15)

By imposing the condition that the central gravitational force should be equal to the

centrifuge force, we can compute the rotation radius r:

 12

αsin)(

2

LFmg
mv

r
−

= (16)

All of the forces and quantities involved in the description of the lateral movement are

illustrated in Figure 3.

 Figure 3. Forces and quantities involved in lateral movement

3.3 Perceptual Information

The autonomous pilot that is developed in this application is actually using perceptual

information to make decisions in regard to the vehicle driving. This is done to simulate the

perceptual cues from real life that a human driver pays attention to while driving the vehicle. In

this application the cues given to the pilot are the following:

The visible front distance, denoted by front, is defined as the distance from the current

position of the vehicle in the direction of movement to the border of the road scaled by the length

of the vehicle. This information tells us how much of the road is visible to the driver and also how

straight the road is in front of the vehicle. We will also refer to this measure as the horizon.

The front probes, denoted by frontl and frontr, are defined as the distances to the border

of the road from the current position of the vehicle in directions rotated le ft and right by a small

angle from the direction of the movement of the vehicle. This gives the pilot information

 13

regarding on which side of the current direction of motion the front distance would be greater,

indicating which direction the road turns.

The lateral distances, denoted by leftd and rightd, define measures of the lateral distances

from the vehicle to the border of the road, at a short distance in front of it, simulating what the

pilot might be aware of without turning their head to look. A high value of this measure indicates

a turn in the road or that the vehicle is close to the border. The value of this measure close to 0

indicates that the vehicle is in the center of the road.

The slope denoted by a slope, is a perceptual version of s which is discretized to simulate

the intuitive notion of the road inclination that a human driver would have, as for example almost

flat, slightly inclined up or down. This simulates the fact that the pilot is not aware of the precise

value of s . The Figure 4 represents the geometrical definition of the measures defined above.

Figure 4. Perceptual information used by the autonomous pilot

Apart from the perceptual information, the autonomous pilot uses the current status of the

motorcycle to make decisions about the actions to be taken on each of the control units. The

status includes measures like the current speed, the current opening of the throttle, the brakes, and

current deviation of the handlebar from the direction of the movement. These values can be

expressed as a tuple (v, r, Bf , Br, F).

 14

3.4 Multi -Agent Pilot

The autonomous pilot that was the starting point for this thesis is composed of several

agents. The model is based on the fact that the motorcycle can be driven using several control

units (CUs). Each of them is controlled by an independent agent with a probabilistic behavior.

The agents are not active during the computation of every new frame simulating the evolution of

the vehicle on the road, but only once in a while in a non-deterministic manner. This simulates

the behavior of a human driver that may not be able to instantly adapt and take action based on

the road situation and would require a certain reaction time. The minimal model requires a CU for

the gas - throttle, which determines the acceleration, for the brakes, which can slow down or even

stop the vehicle, and for the handlebar that controls the direction.

Each of these control units is independently adjusted by an agent. The behavior of the

agents depends on the status of the vehicle and is intended to drive the motorcycle safely in the

middle of the road and at a safe speed as close as possible to a given limit. Each agent can have

its own rate of interference with the coordination of the vehicle, and in our case, the agents

controlling the throttle and the handlebar are in general more active than the agent controlling the

brakes.

Next we will introduce the equations used by each of agents to make a decision and

perform an action.

The Throttle

This control unit is respons ible for controlling the opening of the throttle which

determines the amount of fuel supplied to the engine and implicitly influences the speed of the

vehicle. The input given to this agent can be represented by (v; front; leftd; rightd; slope). The

agent uses a minimal speed threshold vlow, a maximal speed threshold over which the speed is

considered unsafe, and the given speed limit vlimit. The agent aims to keep the vehicle speed above

 15

vlow and below the maximal one, and also close below the vlimit which is an external measure that

does not depend on the configuration of the driver.

The agent will determine the action to be taken based on the following considerations. If

the lateral distance to the left is too different from the lateral distance to the right, the speed must

be decreased because the road is most likely turning. The same rule applies to the visible distance

in front of the driver: a short distance represents an unsafe road situation and the speed has to be

decreased.

Let t be the throttle opening at the moment t, which in turn determines the acceleration of

the vehicle. Let us also denote by latnorm the normalized difference between the left and right

distances as shown in Equation 17 and by latabs = ¦ latnorm ¦ the absolute value of this quantity.

),max(rightdleftd

rightdleftd
lat norm

−
= (17)

Equation 18 presents the condition that must be fulfilled for the throttle to be increased or

opened, which results in a higher acceleration followed by an incrementation of the speed. In this

equation, vlow is a lower limit for the speed, thrlat is a threshold under which we consider that the

difference between the left and right distances is still safe, thr front is the threshold for the safe

front distance in front of the vehicle vlimit is the upper speed limitation, like the legal speed limit

on that road, and ctr is a constant.

and
and
and
or















<

<

>
>

<

 tr(t)cv(t)

 vv(t)

 thrfront
thrlat

vv(t)

t

limit

front

latabs

low

 (18)

 16

Let us denote by trlat a quantity indicating if the normalized absolute difference between

the left and right distances is safe for the vehicle’s current speed, as shown in Equation 19, where

cvlat and pvlat are constants. For higher values of the speed, the safe difference is smaller.

 trlat = latabs -(Cvlat)/(1+v(t))1/pvlat) (19)

Let us denote by trfr a quantity indicating if the front distance is safe for the vehicle’s

current speed, as shown in Equation 20 where cv fr and pvfr are constants.

 tr fr = (cvfr /(1+v(t))1/pv fr) - front (20)

Equation 21 represents the condition to be fulfilled for the throttle to be decreased or

closed, which will have the effect of slowing down the vehicle under the influence of the friction

force.

 v(t) > vlimit and trlat > 0 and trfr > 0 (21)

Let us denote by ? t = t (t + ? t) - t (t). The equation governing the change in throttle that

the agent will perform based on the current vehicle and road status is illustrated by Equation 22,

where cincv, cdecv, and csl are constants. The actual amount of the change is a probabilistic quantity

equally distributed in a small neighborhood around the computed value.

 ? t = cincv(front - thrfront)(v(t) - vlow)+
 cdecv ((v(t) - vlimit) + trlat +trfr)+csl slope (22)

The actual ? t which will be applied is given by ? t actual = randouble(0.8,1.2) ? t , where

randouble is a function generating a real number uniformly in a given interval. This simulates the

imprecision of a human driver and has no other physical meaning. For this reason we considered

that the uniform distribution was sufficient.

The Brakes

The brakes agent is using the same idea as we have seen for the throttle agent as it is

assumed that all the rules which decide whether the speed should be reduced or increased are of

 17

general purpose and apply to all of the agents that have an influence on the speed. The equations

for this agent are simpler as the brakes can only reduce the speed at any time.

Even though the constraints used in the equations for the brakes are the same for the

throttle, the coefficients in these equations can have different values than those used for the

throttle. As we know, the brakes are activated less frequently than the throttle when a human is

driving a motor vehicle, because there is a seldom a need for such a drastic decrease in the speed

that closing the throttle is not enough.

Let us say that Br;f is the amount of force applied to the brakes at time t. In our

assumptions the force is distributed 60% on the front brakes and 40% on the back brakes. The

brakes are handled by Equation 23 and have a probabilistic behavior similar to the throttle agent ,

but we can adjust the constants and thresholds independently of the agent controlling the throttle.

 ? Br;f = cdecv ((v - vlimit) + trlat +trfr) - cslope (23)

From this equation we can see that a force is applied to the brakes if the speed is

higher than the limit, if the front distance is too small, or if the vehicle is much closer to

one lateral side of the road than to the other.

The Handlebar

This agent is in charge of controlling the handlebar of the motorcycle and determines if

the rotation should be applied to the handlebar at a given moment, and what should the rotation

angle be. This is the equivalent of the steering wheel for a car when it has to make a turn. This

agent is using the lateral distances to the border of the road that are leftd and rightd, and also

frontl and frontd which are the front probes. The agent turns the handlebar in the direction of the

longer distance between frontd and frontl which has the effect of getting away from the closest

border. The agent first considers the distance to either side, given by lateral distances. Thus, if the

 18

vehicle is not within a given percentage (20%), of the center of the road then the agent moves the

handlebar to direct the vehicle towards the center of the road.

If the first measure does not provide the conditions to make a turn, the agent estimates the

distance forward to the horizon (or front distance). Based on the front probes and the front

distance, the agent moves towards the center of the horizon. The angle by which the handlebar

turns depends on the distance to the horizon: the angle is bigger if the horizon is closer.

The agent decides whether to use the lateral distances as reference or the front probes

based on criteria shown in equation 24. Let us denote by probe n the normalized difference

between the front and right probes as in the equation below and by probeabs = | probenorm| the

absolute quantity.

),max(frontdfrontl

frontdfrontl
proben

−
= (24)

Let us denote by latdiff the quantity used by agent to decide if it must turn in which

direction as given by the equation below.

 latdiff =











>>
+

>>

otherwiseprobe

 thrfront andthrlatnif
probelat

thrfrontandthrlatiflat

n

d
nn

dnnorm

43

43

2
 (25)

where thri, i = 1, 4 are configurable coefficients.

The handlebar agent will update the position of the handlebar if the condition expressed

in Equation 26 is fulfilled. This means that the change is necessary if the lateral difference

measure is greater than the threshold thrlat, or if the distance in the direction of movement to the

border is smaller than another threshold thrfront.

 19

Let us denote ?F = F(t + ?t) – F(t) the change in the handlebar angle decided by the

agent. Then the general rule for modifying the rotation of the handlebar is shown in Equation 27.

The actual amount of the change is a probabilistic quantity equally distributed in a small

neighborhood around the computed value as in the following equation: ? F actual = randouble (0.8,

1.2)* ? F .

 ? F = chbar(latdiff + (thrfr - front)/ thrf) (27)

The amount of change in the direction of the handlebar depends on how different the le ft

and the right lateral distances are either right next to the vehicle or at the intersection of the road

in front of it, based on the measure of latdiff and on the speed. If the motorcycle is at a lower

speed the handlebar has to be turned more to achieve a given change in the direction. If the

vehicle is moving at a higher speed then a small change in the orientation of the handle bar will

obtain the same change in the direction.

Leaning Agent

The following which is in charge of controlling the leaning of the motorcycle.

This agent also uses the lateral distances to the border of the road that are leftd and rightd and

also frontl and frontd which are the front probes as used by the handlebar agent. The agent leans

the vehicle in the direction of the longer distance between frontd and frontl which has the effect

of getting away from the closest border. The agent first considers the distance to either side, given

by the lateral distances. This agent measures the distance forward to the horizon. If the

motorcycle is not within the given percentage (20%) of the center of the road, then the agent

checks whether the motorcycle in on left side of the road or on the right side of the road and it

leans the vehicle towards the center of the road. If the distance to the horizon is smaller then it

checks the whether the curve of the road is to the left or to the right and it leans accordingly. A

condition is also checked to see if the motorcycle if already in left or right leaning mode. In that

case the agent cannot lean again in the same mode.

 20

Alerting Agent

Another agent which is important for the functionality of the motorcycle is the alerting

agent which does not have any direct control on the vehicle , but interacts with other agents. While

other agents are active occasionally, this agent is probing the vehicle and the road condition for

every new frame and is capable of activating one of the other agents if the situation requires extra

attention. That is if the speed of the vehicle is too slow or too fast, or if the visible front distance

is too short, or if the difference between the left and right lateral distances is too high, then this

agent considers the situation as not safe. In this case, the agent generates an event which

randomly activates one of the agents that can take action and correct the issue.

The following equations describe the conditions that must be true for the alerting agent to

consider that the state of the vehicle is unsafe and trigger one of the agents coordinating the

vehicle to take some action and correct the situation. The alerting agent will only generate an alert

message but does not decide which other agent will perform the necessary action.

or
or

or

 thrfront

 thrlat

vcv

vcv

fr

latabs

limitvhigh

itvlow













<

>

>

< lim

 (28)

4. Pilot Testing and Evaluation

In this section we discuss application details from the previous project and also some of

the improvements done.

4.1 Application Details from the Previous Project

The application is capable of driving the motorcycle by receiving input from both a

human player and an autonomous pilot. The circuit cons ists of 3 loops as in Figure 4 a portion of

the road is elevated with respect to the rest of the road. The circuit is designed such that it will

 21

test the ability of the pilot when road turns both left and right where the slope of the road is

ascending and descending.

The autonomous pilot was previously configured by hand and was capable of completing

the circuit with some average speed considerably slower than the human player. The speed of the

autonomous pilot showed an interesting behavior compared to the human player. In the case of

the human player, the entire set of keys was hardly used and after the player is comfortable with

speed of the vehicle they can complete the circuit by just using the lateral movement of the

motorcycle. The pattern of variation in speed makes the simulation very close to the real life. In

case of the autonomous pilot we can observe that autonomous pilot was more sensitive to the

difference between left and the right distances to the border of the road. The number of turns

taken is by the pilot was higher more compared to human driver.

4.2 Testing for Completion of a Circuit

The Figure 5 shows the perspective view of the circuit that has been used.

Figure 5. The test circuit

The Figure 6 shows the main window of the application displaying the motorcycle and

the road with some perceptual cues, the outline of the road triangulation, and also the centerline.

There is also a sub window containing a mini-map of the circuit which shows the position of the

motorcycle. This helps the human player to locate the position of the vehicle on the entire circuit

and lets them know how much of the circuit has been completed.

 22

Figure 6.The main application window displaying the vehicle

In order to improve the GUI, I used texture mapping in OpenGL library to add some

banners to the scene. One of them can be observed in Figure 6. This is very helpful for tracking

the position of the vehicle.

In the previous version of this application there was no functionality to check the

completion of the circuit. So the user had to toggle the pilot off after they observed that the

motorcycle did complete a circuit. Part of my work has focused on checking for the completion of

a circuit. For implementing this I considered a centerline which was drawn on this road. Since the

motorcycle starts from the initial position I calculated the minimum distance between the position

of the motorcycle and the centerline coordinates. After the motorcycle starts its motion, at every

frame I check which of the centerline points the motorcycle is the closest to. A counter is keeping

track of how many times the vehicle is closest to each point of the centerline. Each time I check

whether the current position is the closest to the same centerline point as before or if it is nearer to

the previous point (in this case the motorcycle is going backwards) or to the front point (in this

case the motorcycle is moving forward). In a perfect case, the motorcycle will pass next to all of

the centerline points once. The value of the counter for a point being greater than 0 means that the

 23

vehicle was closest to that point at least once. These counters will show the behavior of the

vehicle and can be used to test the completion of the circuit.

4.3 Testing for Different Crashing Conditions

There are four possible cases in which the test of one circuit ends when the motorcycle runs

in the pilot mode. In first 3 cases we consider that the circuit was not completed (failure).

• If the leaning angle of the motorcycle is higher than a threshold at some point, the

vehicle loses balance and falls (crashes).

• The motorcycle exits the road and does not return to it soon enough.

• The motorcycle makes a turn and returns back to the starting position without completion

of the circuit.

• The motorcycle completes the circuit without crashing.

In order to improve on the first crashing condition, I adjusted the crashing threshold, such

that the motorcycle crashes at a higher lateral angle. This feature is now more realistic. For the

second failure condition I added a timer to calculate for how long the vehicle is off the road. If the

vehicle stays off of the road for more than 1 minute then I will reset the motorcycle to its initial

position.

In third case the motorcycle will not crash, but it may deviate in and out off the road

several times and possibly take a hard turn that takes it backward so that it reaches the starting

point again without traversing the entire circuit.. This case can be tested by checking the counters

for the centerline points. If the total number of points that the vehicle passed next to is less than

the total number of points on the centerline, then we can deduce that the autonomous pilot did not

complete the circuit.

 24

In the fourth case the motorcycle completes the circuit. The test for this condition is that

the motorcycle reaches the starting point again and all the centerline points show counters with

positive values.

The general test will start from a given position on the road ((0, 0, 0) –starting position).

The pilot is toggled on with a speed of 0, and then allowed to run until some ending condition is

met. At that moment we output and store the statistics. In each trial run of the motorcycle we are

interested in following statistics:

• Total time: total time pilot was on (t).

• Average speed and maximum speed (v and max v).

• Total distance covered. This is a measure of how efficiently the pilot has completed the

circuit.

• Total number of times the vehicle left the road and average time spent off the road.

• Total number of left and right turns.

• Total number of left and right leans.

• Average lean angle when leaning left or right.

• Average lateral balance: a balance of 0 is achieved when the vehicle is in the center of the

road and of 1 when the vehicle is on the border. A lower balance indicates a better road

behavior of the pilot.

• Circuit completed or not completed.

4.4 Improvements to the Graphical Application

In the application before the leaning angle of the vehicle was such that even some

increase in the leaning angle used to make the motorcycle uncontrollable and the vehicle would

go off the road when making a turn in the case where the road is elevated (uphill). I adjusted the

leaning angle such that the vehicle can lean to a higher extent and more efficiently.

 25

The crashing angle in the previous setup was such that even if the vehicle was leaning to

a small extent, it would crash very often. I adjusted the crash angle such that even if the vehicle

leans to a higher extent, it can be made to regain its upright position.

I added some functionality to the motorcycle such that if the vehicle crashes, it can be

restarted from the same position. I also attached controls in the human player mode such that if

the vehicle crashes outside the road it can be pulled back or pushed front with a small constant

speed. This is the equivalent to a manual pull and push of the vehicle in real life.

As I needed to run the motorcycle for a number of trials in order to compare the behavior

of the motorcycle under various conditions, I added a functionality to run the motorcycle in the

pilot mode for a given number of times. All of the statistics will be stored in a result file.

5. Application of Genetic Algorithms

In this section we introduce the genetic algorithms, the operations, their application, and

also an example of GA explained for a particular problem.

5.1 Introduction to Genetic Algorithms

Genetic algorithms (GA) (Holland, 1975; Goldberg 1989) are a part of evolutionary

computing, which is a rapidly growing area in the field of artificial intelligence. These algorithms

are based on Darwin’s theory of evolution. This means that problems are solved by an

evolutionary process which is used to optimize the solutions to a given problem (the solution is

not always the best). A GA uses a probabilistic process to find approximate solutions to difficult-

to-solve problems through application of the principles of evolutionary biology to computer

science. Genetic algorithms use biologically-derived techniques such as inheritance, mutation,

natural selection, and recombination (or crossover).

 26

Genetic algorithms are typically implemented as a computer simulation in which a

population of abstract representations (called chromosomes) of candidate solutions to an

optimization problem (called individuals) taken from a search space evolves toward better

solutions.

Traditionally, potential solutions are represented as binary strings of 0 and 1 values called

genes. The evolution starts from a population of completely random individuals and takes place

in several generations. In each generation, multiple individuals are stochastically selected from

the current population, modified (mutated or recombined) to form a new population, which

becomes the current population in the next iteration of the algorithm.

A measure of how good a solution is to solve the problem, called fitness function, is also

necessary in the evolutionary process.

5.2 Comparison of Natural and GA Terminology

The strings of artificial genetic systems are analogous to chromosomes in biological

systems. In natural systems, one or more chromosomes combine to form the total genetic

prescription for the construction and operation of some organism. In natural systems the total

genetic package is called genotype. In artificial genetic systems the total package is called a

structure. In natural systems the organism formed by the interaction of total genetic package is

called the phenotype. In artificial genetic systems, the structure decode to form a particular

parameter set, solution alternative, or point (in the solution space). In natural terminology, we

say that chromosomes are composed of genes which may take a number of values called alleles

and in artificial intelligence we say that strings are composed of features or detectors, which take

one of the possible values. The position of the gene is called locus and in artificial genetic

systems we say it is the string position.

 27

5.3 Operation of a GA

The algorithm begins with a set of candidate solutions (represented by chromosomes)

called population. Potential solutions from one population are taken and used to form a new

population. This is motivated by a hope, that the new population will be better than the old one.

This assumption was partially explained by the schemata theorem (Goldberg 1989). From the

current individuals some are selected to form new potential solutions (offspring). This process

uses the fitness of each individual such that the more suitable they are as candidate solutions to

the problem, the more chances they have to reproduce.

This process is repeated until some condition (for example achieving a given number of

generations or a given improvement of the best potential solution) is satisfied.

Outline of the Basic Genetic Algorithm

1. [Start] Generate random population of n chromosomes (potential solutions for the

problem)

2 [Loop] over the following steps until a convergence condition is satisfied.

1. [Fitness] Evaluate the fitness f(x) of each chromosome x in the population

2. [New population] Create a new population by repeating following steps until the

new population is complete

3. [Selection] Select two parent chromosomes from a population according to their

fitness (the better fitness, the bigger chance to be selected)

4. [Crossover] With a crossover probability cross over the parents to form new

ones (offspring or children). If no crossover was performed, the offspring is the

exact copy of the parents.

 28

5. [Mutation] With a mutation probability, mutate the new offspring at each locus

(position in chromosome).

6. [Accepting] Place the new offspring in the new population.

7. [Replace] Use new generated population for a further run of the algorithm.

8. [Test] If the end condition is satisfied, stop, and return the best solution in

current population

3 [Return] the best solution in the last generation.

5.4 Genetic Algorithm Explained with an Example

Initial Population

A genetic algorithm starts with a population of strings to be able to generate successive

populations of strings afterwards. The initialization is done randomly. This means to say that

every gene is set to 0 or 1, with each value having a chance of 50% to occur.

In our problem we have chosen each of the parameters with a 10 bits representation. Each

of them has the inferior limit of 0 and maximum of 10. In order to explain this better, let us

consider an example . Suppose we need to find the maximum of the function

 u(x, y) = (x – 7)2 + (y – 3)2 (29)

with both x and y taking values in an interval range of [0,7].

 29

Figure 7. Graph of the function u(x,y) = (x-7)2 + (y-3)2

We need to generate a code for this problem. A binary representation of six bits has been

chosen, where the three bits on the left represent x and the three bits on right represent y.

Let us assume that the following table represents the initial population of strings selected by

successive flip of coins.

Table 1. Initial population

Number String Values

1 100001 (x = 4, y =1)

2 001100 (x= 1, y = 4)

3 110010 (x =6, y = 4)

4 000100 (x = 0, y = 4)

Evaluation

After every generated population, every individual in the population must be evaluated so

that we can select the better ones. This is done by comparing the individuals with the fitness

function. In this case we consider f(x) = u(x). By substituting the values of x and y in the equation

we get the fitness of 13, 37, 2, 50 for the initial population.

 30

Reproduction

It is very important to decide which individuals will be chosen for the purpose of

procreation. In GA this selection is based on the string fitness. According to the ‘survival of

fittest’ principle , if a string A is twice as fit as string B, then A is expected to appear twice as

much in the next generation. This kind of implementation of the reproduction is done by creating

a biased roulette wheel where each current string in the population has a roulette wheel slot sized

in proportion to its fitness [Goldberg, 1989]. By dividing the individual fitness by the average of

all fitness values, we can calculate the expected count of this individual in next generation. In the

example we explain, the average fitness in 25.5. So the expected count of individual one in the

next generation is 13/25.5. = 0.52. Other expected counts are shown in table 2, as well as the

normalized fitness values, which are equal to the fitness values divided by the total sum of all

fitness values (102 in our example), multiplied by 100%. The normalized fitness gives the chance

of an individual to be chosen as a parent. A method to actually select an individual as a parent is

to use a sum function Si = ? i
j=1 fi, (the sum of all fitness values from individual one to individual

i), and randomly and uniformly choose an integer between 0 and the sum of all fitness values.

The first individual whose Si is equal or greater than this integer will be chosen as a parent. The Si

values are shown in table 3. For example, suppose that the randomly chosen number is 53, then

the individual 4 will be chosen as a parent because S4 is the first value that succeeds 53. This

routine will be repeated until we have 4 parents.

 31

The parent is as shown in Table 2 below.

Table 2. Reproduction results

Number String (x,y) Fitness Normalized Si Expected

count

Actual

1 100001 (4,1) 13 12.7% 13 0.51 1

2 001100 (1,4) 37 36.3% 50 1.45 1

3 110010 (6,2) 2 0.20% 52 0.08 0

4 000100 (0,4) 50 49.0% 102 1.96 2

Crossover

Once the two parents are selected from the previous step, the genetic algorithm combines

them to create two new offspring. Combination is done by the crossover operator. We have

selected the one-point crossover for our experiments.

One-point crossover

A random crossover point is selected. The first part of the first parent is combined with

the second part of the second parent to make the first offspring. The second offspring will be built

from the second part of the first parent and first part of the second one.

For the example we have chosen above, the random crossover point is selected between the last

two genes.

Parent #1: 10000 | 1

Parent#2: 11001 | 0

The resulting offspring is as following:

Offspring #1 : 100000

Offspring #2: 110011

 32

One of the most important aspects of crossover is that one-point crossover cannot

generate certain combinations of features encoded on chromosomes: schemata with a large

defining length are easily disrupted. It is also possible that certain elements are not allowed to

appear more than once. In that case, precautions have to be taken.

Two-Point crossover

The two-point crossover operator differs from the one point crossover in the fact that two

crossover points are selected for the operation. Starting from the same parents as above, let us

suppose that the crossover points are chosen as shown below:

Parent #1: 100 | 00| 1

Parent#2: 110 | 01| 0

The offspring in this case will be the following:

Offspring #1: 100 | 01 | 0

Offspring #2: 110 | 00 | 1

Uniform crossover

In the uniform crossover each gene is selected randomly, whether from the first part

parent or from the second one, with a certain probability.

Parent #1: 100001

Parent#2: 110010

The offspring in this case is as follows

Offspring #1 : 110000

Offspring #2: 100011

 33

Mutation

The mutation is the genetic operator that randomly changes one or more of the

chromosome's genes. The purpose of the mutation operator is to prevent the genetic population

from converging to a local minimum and to introduce in the population new possible solutions.

The mutation is carried out according to the mutation probability.

The mutating operator simply tosses a biased coin with probability pmutate(which is very

small) at each bit and, according to that result, changes a 1 into a 0 and vice versa.

 Table 3 shows the result of the mutation operator.

 Table 3. Mutation operation

Before Mutation After Mutation

101100 100100

Table 4. New population and fitness after crossover and mutation

Number Selected parents After crossover After mutation New fitness

1 10|0001 101100 100100 10

2 00|1100 000001 000001 53

3 00010|0 000100 000100 50

4 00010|0 000100 000100 50

As we expected, a new string with high fitness has appeared. The sum of the fitness in the

population increased from 102 to 163 and the average has also increased from 25.5 to 40.8. In the

initial population, strings 1 and 2 were selected (average fitness), string 3 was not selected (low

fitness) and string 4 was selected twice due to its high fitness. Crossover helped us by providing

the high fitness string 000001(string2) and also string1 which has a lower fitness of 10.

 34

This process of reproduction crossover and mutation is carried out until there is no further

change in terms of fitness. Then we say that we have reached the optimal fitness value for the

given problem.

5.5 Applications of Genetic Algorithms

GAs are widely used in various types of problem solving, for modeling, and also in

various scientific, and engineering problems.

Following are some of the applications of GA

• Optimization: GAs are used in a wide variety of optimization tasks like numerical

optimization, and combinational optimization problems such as travelling salesman

problem(TSP), circuit design, job shop scheduling, and video and sound quality

optimization.

• Automatic Programming: used to evolve computer programs for specific tasks, and to

design other computational structures, for example, cellular automata and sorting

networks.

• Machine and robot learning: used for many machine- learning applications, including

classification and prediction, and protein structure prediction. GAs have also been used to

design neural networks, to evolve rules for learning classifier systems or symbolic

production systems, and to design and control robots.

• Economic models : used to model processes of innovation, the development of bidding

strategies, and the emergence of economic markets.

• Immune system models : used to model various aspects of the natural immune system,

including somatic mutation during an individual's lifetime and the discovery of multi-

gene families during evolutionary time.

• Ecological models : used to model ecological phenomena such as biological arms races,

host-parasite co-evolutions, symbiosis and resource flow in ecologies.

 35

5.6 Genetic Representation of the Motorcycle Pilot

To apply the GAs to our problem we need to find a good representation of the potential

solutions as chromosomes and to find a good fitness function. The behavior of the agents is

described by some equations. For example , in Section 3.4 we have introduced the throttle agent.

The genetic representation of this agent starts with the sequence of all configurable parameters

occurring in equations (17) to (22).

S = (latnorm, leftd,rightd, v(t), vlow, latabs, thrlat, front, thr front, vrlimit, ctr , tr(t), trlat ,pvlat, trfr, cvfr,, pvfr,

cincv, cdec, csl)

These are all real numbers that we can further represent as a sequence of binary genes

(for example 10 genes for each parameter). For example , if the 0 = thrfront = 10, then the sequence

00….0 will represent thrfront = 0, 11…1 will represent thrfront = 10, 10…0 for thrfront = 5, and so on.

This idea is shown in Equation 30.















=
=







 +

=







 +

=

 upperper lower, up
lowerper lower, up

upper,
2

lowerupper
per lower, up

2
lowerupper

lower, per lower, up

)real(1,
)real(0,

 L, real)real(1L,

 L, real)real(0L,

 (30)

where L is any sequence of bits. In our case we start with lower = 0 and upper = 10. More

precisely, the sequence 1000110111 can be converted as:

real(1000110111) = 1(5) + 0(2.5) + 0(1.25) + 0(0.625) + 1(0.3125) + 1(0.15625) + 0(0.078125)

+ 1(0.0390625) + 1(0.0195312) + 1(0.0097656)

 ˜ 5.5371093

 36

The final chromosome is a concatenation of all these sequences of genes for all of the

parameters. There are 32 parameters total for our pilot and so the chromosomes have a length of

320.

The fitness function will be computed by running the motorcycle in a non-graphical

environment over the entire circuit using the real representation of the chromosome as

configuration for the autonomous pilot. The criteria for computing the fitness will involve how

far the pilot went on the circuit before crashing or getting out of the road, and how fast it

completed the circuit in case of success.

At the end of experiments, the parameters derived by the GAs can be imported back into

the graphical application for a visual verification of the quality of the solution and for testing the

pilot with these new parameters under the same conditions as we have done for the manually

configured one.

Fitness Function

The fitness function to evaluate the quality of the pilot represented by a chromosome was

defined as below

Let

 F(x) = Fitness Function

 dm = number of points touched by the motorcycle

 dt = total number of points

 tm = total time taken by the motor cycle before crashing or completing the circuit

Each time this fitness value is noted and at the end of number of generations










+
+

+
+

=
completednotwascircuittheif

td
d

completedwascircuittheif
td

d

xF

mt

m

mt

m

5
1

1
1

)(
 (31)

 37

The second part of the Equation 31 is designed to put higher accent on the percentage of

the circuit completed by the pilot than on the time when circuit was not completed.

Implementation Details

Figures 8, 9, 10, 11shows the interface to the genetic algorithm with the settings we have

used for our experiments.

Figure 8. Main application screen GA settings Figure 9. Running options settings

Figure 10. Evaluation options settings Figure 11. Running options settings

 38

6. Comparison Study

Table 5 shows the statistics for two human players reported in (Vrajitoru, Mehler, 2004).

We include these results so that they can be compared with the autonomous pilot.

Table 5.Statistics for two human players

Steering
Measure Human1 Human2

Total time 97.4 79.2
Total distance 2312.05 2316.83
Speed 6.19 8.94
Max speed 8.75 12.26
Lateral balance 0.29 0.36
Left turns 121.4 119.2
Right turns 51.4 47
Times it left the road 0 0.4
Recovery Time 0 11.2
Number of circuits 100% 100%
Perfect circuits 100% 60%

 In order to compare the behavior of the motorcycle in case of using genetic algorithm

with the heuristic approach, Table 6 show the results obtained in steering and leaning mode for

100 trials before applying the genetic algorithms.

From Table 6 we can see that the autonomous pilot was capable of completing the circuit

92% of the time in approximately 6.5 minutes on the average. The pilot did not complete the

circuit in the leaning mode.

The average completion time for the human players shown in Table 5 was approximately

1.5 minutes, so the autonomous pilot configured manually showed a fairly lower performance

than the human players.

 39

Table 6. Average result of 100 trails

Steering Leaning

Measure
Completed

circuits
Incomplete

circuits
Incomplete

circuits
Total time 327.75 78.25 15.79
Total distance 2338.77 720.421 77.2304
Speed 1.95824 2.58261 1.24538
Max speed 4.98943 4.95509 2.5573
Lateral balance 0.323663 0.327008 0.547597
Left turns 128.457 45.75 0
Right turns 58.3804 22.25 0
Left leans 0 0 4.53
Right leans 0 0 7.74
Leaning angle to the left 0 0 -7.60397
Frames leaning left 0 0 105.1
Leaning angle to the right 0 0 9.00594
Frames leaning right 0 0 25.16
Times it left the road 0.347826 1.75 0.4
Frames spent out of the road 2.30435 8.625 15.545
Number of circuits 92 8 100

The Table 7 shows the average fitness function for both leaning mode and steering mode

which is obtained by GA.

Table 7. Average fitness in 100 trails for 100 generations
Generation Steer Lean

0 1.76074 0.273014
10 1.80534 0.311289
20 1.84572 0.327876
30 1.85608 0.33766
40 1.86285 0.344841
50 1.86695 0.35315
60 1.88226 0.358102
70 1.8854 0.363652
80 1.90286 0.369676
90 1.90404 0.379083

100 1.90845 0.380829

Figure 11 shows the graph of the average fitness evolution in the steering and leaning

mode during the execution of the GA. This shows the best average fitness achieved in 100

generations is around 1.9 in the steer mode and the best fitness is 0.38 in lean mode.

 40

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80 90 10
0

Generation

A
ve

ra
g

e
F

itn
es

s

Steering

Leaning

Figure 12. Average fitness in steering and leaning mode with the GA

All the trial runs are done in the non GUI mode for GA parameter calculation. So in order

to visually verify the obtained results, I imported the parameters derived by the best GA run back

into the GUI application of the motorcycle and did a run in steering and leaning mode for 100

trials. The results obtained are as in Table 8 below.

From Table 6 and Table 8 it is clearly evident that the time taken by the motorcycle is

reduced by 60%, the speed of the motorcycle has increased by more than 100% in steering mode

with parameters obtained by the GA. Also we can observe that in steering mode in Table 6 there

are 6 incompleted circuits in steer mode, but with the parameters derived by the GA, all of the

100 circuits are completed in steer mode.

There is also one more interesting result in the behavior of the motorcycle in lean mode

that can be observed after applying the GA. In Table 6 as we see there are no completed circuits

in lean mode whereas by applying the parameters obtained from the GA, we observe there are

one circuit completed the by motorcycle. The average time that the morotcycle spends on the road

before crashing in case of the incomplete circuits has also increased from 15.79s to 52.6s which is

333.12%.

 41

Table 8. Verification of GA parameters in motorcycle GUI application

Steering Leaning

Measure Completed circuits
Completed

circuits
Incomplete

circuits

Total time 133.73 221 52.596
Total distance 2333.33 2356.08 522.457

Speed 4.16 2.7354 2.07084

Max speed 6.48 6.07947 5.08668
Lateral balance 0.4 0.396827 0.463341

Left turns 112.04 0 0
Right turns 113.51 0 0

Left leans 0 5 4.79798

Right leans 0 4 4.63636
Leaning angle to the left 0 -3 -4.00343

Frames leaning left 0 2724 633.121
Leaning angle to the right 0 3 4.29006

Frames leaning right 0 1444 285.253

Times it left the road 0.54 0 0.020202
Frames spent out of the
road 2.89 0 1.0101
Number of circuits 100 1 99

 42

7. Conclusions

In this thesis it has been shown that genetic algorithm performed better in choosing the

coefficients that determine the behavior of the pilot than the manual configuration of the pilot

chosen by the user in previous application. The experiments in Section 6 have shown that the

autonomous pilot is capable of successfully driving the motorcycle over the entire length of a test

circuit in conditions that are comparable to human driver. The time taken by the driver to

complete a circuit using GAs is less than 50% of the time compared to the previous settings of the

pilot. We observe that the number of left and right turns taken by the driver in the case of GA is

lot lower which indicates a higher performance in choosing the correct path on the road. In the

previous application the driver was more sensitive to the differences in left and right distances

than a human player and the general impression of the ride was less smooth. Using GA’s the

motorcycle ride is smoother and the simulation is closer to a real life situation.

Our experiments have set the premises for a more complete and thorough evaluation of

the autonomous pilot and have proven that the genetic algorithms represent a valid approach for

successfully and efficiently configuring the autonomous pilot.

The application of GA presented in this thesis can be extended to other types of vehicles

or to autonomous robots.

 43

8. References

T. Al-Shihabi and R.R. Mourant (2003): Toward more realistic behavior models for

autonomous vehicles in driving simulators . Transportation Research Record, (1843):41.49,

2003.

T. F. Abdelzaher, E. M. Atkins, and K. G. Shin (2000): QoS negotiation in real-time systems

and its application to automated flight control. IEEE Transactions on Computers,

49(11):1170.1183, Best of RTAS '97 Special Issue.

E. M. Atkins, R. H. Miller, T. VanPelt, K. D. Shaw,W. B. Ribbens, P. D. Washabaugh, and D. S.

Bernstein (1998): Solus: An autonomous aircraft for flight control and trajectory planning

research. In Proceedings of the American Control Conference (ACC), volume 2, pages 689.693.

Andreas Fuchs(2000): Trim of aerodynamically faired single -track vehicles in crosswinds.

Proceedings of the 3rd European-Seminar on Velomobiles, Roskilde, Denmark.

J. Fajans (2000): Steering in bicycles and motorcycles The American Journal of Physics 68, p

654.

V. Gavrilets, E. Frazzoli, B. Mettler, M. Piedmonte, and E. Feron (2001): Aggressive

maneuvering of small helicopters : a human centered approach. International Journal on

Robotics Research.

Goldberg, D. E. (1989): Genetic Algorithms in Search, Optimization, and Machine Learning.

Reading (MA): Addison-Wesley.

Holland, J. H. (1975): Adaptation in Natural and Artificial Systems. Ann Arbor: University of

Michigan Press.

Kamran H. Sedighi, Kaveh Ashenayi, Theodore W. Manikas,Roger L. Wainwright, Heng-Ming

Tai (2004): Autonomous Local Path -Planning for a Mobile Robot Using a Genetic Algorithm,

Technical report, Electrical Engineering and Computer Science Dept.University of Tulsa, Tulsa,

OK 74104.

T. Kelly (1997): Driver strategy and traffic system performance. Physica A, 235:407.417.

 44

J. De Mot and E. Feron (2003): Spatial distribution of two-agent clusters for efficient

navigation. In IEEE Conference on Decision and Control, Maui, HI.

R.R. Mourant and S. Marangos (2003): A virtual environments editor for driving scenes. In

Proceedings of the International Conference on Computer, Communication and Control

Technologies, volume IV, pages 379.384, Orlando, Florida.

M. Mohan, D. Busquets, R.López de Màntaras and C. Sierra (2004): Integrating a potential

field based pilot into a multiagent navigation architecture for autonomous robots.

Proceedings of ICINCO'04 (Vol. 2), pp. 287-290, INSTICC Press.

K. Nagel (1996): Particle hopping models and traffic flow theory. Physical Review E, 53:4655.

J. Olsen, J.M. Papadopoulos (1988): Bicycle dynamics (The meaning behind math). Bike

Tech.

Rahul Sukthankar, Shumeet Baluja, and John Hancock (1998): Multiple adaptive agents for

tactical driving. Applied Intelligence, 9(1):7.23.

Robin Biesbroek (2001) : Genetic Algorithms Tutorial:

http://www.estec.esa.nl/outreach/team/robin_biesbroek.htm

D. Vrajitoru, R. Mehler (2004): Multi-agent autonomous pilot for motorcycles.: The IEEE

Region 4 Electro/Information Technology Conference (EIT2004), August 26-27, Milwaukee, WI.

