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Abstract 
 

The Physics behind motorcycle driving are well understood and implemented by studying 

the laws of kinetics and kinematics behind the operation of the single track motor vehic le. 

 
In this thesis I worked with an application which is currently using OpenGL and 

implements an interactive motorcycle simulator which is based on the laws of physics. This 

application involves a multi-agent pilot capable of autonomously driving the vehicle using some 

configurable equations. 

 
I have applied genetic algorithms to find suitable values for the parameters of the pilot by 

testing it in a non graphical environment, and I visually verified the results of  the genetic  

algorithms with the graphical interface application. The performance of the pilot derived by the 

genetic algorithms is also compared with the manually configured pilot. 
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1. Introduction 
 

Many real - world and scientific  applications make use of autonomous techniques, like 

autonomous robots (Al-Shibabi, Mourant, 2003; Sukthankar, Baluja, Hancock, 1998), automated 

flight control (Abdelzaher, Atkins, and Shin, 2000; Atkins, Miller, VanPelt, Shaw, Ribbens, 

Washabaugh, and Bernstein , 1998; Gavrilets, Frazzoli, Mettler, Piedmonte, and Feron, 2001), 

traffic control (Kelly, 1997; Nagel, 1996; De Mot , Feron, 2003; Mourant , Marangos, 2003). 

 
The intelligent agents represent a modern approach in artificial intelligence and they have 

been extensively utilized for many applications. Several approaches have applied multi-agent 

models to the simulation of autonomous drivers and this application follows similar ideas. A 

related research direction focuses on traffic flow simulation or trajectory planning. 

 
The paper that motivated my interest is (Vrajitoru, Mehler, 2004) in which they describe 

a motorcycle simulation implemented using the OpenGL library and providing real time 

interaction for a human player. They developed a visual interface that allowed a human user to 

change the point of view and drive the vehicle which in this case is a motorcycle. This application 

currently includes an autonomous pilot that can be toggled on and off and also a test circuit that a 

human or an automatic driver must attempt to complete. The autonomous pilot is a multi-agent 

probabilistic application with a separate configuration interface where each process is acting on 

one of the control units of the vehicle like gas, brakes, the handlebars (equivalent to the steering 

wheel for a car). The agents use some of the information about the current status of the vehicle to 

make a decision about an action to be taken on the control units they are in charge of. The 

information includes both status data, like the current speed, and perceptual data, like the visible 

distance on the road in the direction of movement, the lateral distance to the border of the road 

and the current slope. 
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The genetic algorithms (Holland 1975; Goldberg, 1989) are widely used learning and 

optimization method with many applications especially fields related to our current research, in 

particular to robotics (Sedighi, Ashenayi, Manikas, Wainwright, Tai, 2004). 

 
My goal in this project was to apply genetic algorithms (GAs) to configure the agents 

composing the autonomous pilot. Thus, each agent has a behavior determined by a set of 

equations involving some coefficients and thresholds, as I sha ll briefly describe in Section 3. All 

of these are currently configured by a human player by trial and error, which is a time consuming 

and imprecise process. 

 
By applying the GAs to find the optimal values for all of the coefficients involved in the 

equations of the agents, the process of deriving a good behavior for the autonomous pilot can be 

made automatic. In the same time I achieved a better performance than it is possible by simply 

adjusting these parameters by hand. 

 
To better explain the research topic, Section 2 presents the literature survey of the bicycle 

dynamics and other related topics. Section 3 introduces the physical model of the motorcycle 

followed by the control units of the motorcycle. Section 4 explains one major contribution of this 

thesis which is the automatic testing of the circuit completion and detection of various crash and 

failure condit ions. Section 5 presents the implementation of the genetic algorithms to apply them 

to the current problem. Section 6 introduces the experimental results and a comparative study of 

the GA with the previous pilot. Finally, Section 7 presents some conclusions. 
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2. Literature Review 

 
The need for autonomy for vehicles arises from the difficulty of always having a human 

operator controlling the system. The interest in multi agent autonomous pilots has been rapidly 

increasing in last few years. In a research paper (Mohan, Busquets, Lopez de Màntaras, Sierra, 

2004) considers a multi-agent pilot which in this case operates a robot capable of navigating in  

inaccessible environments which are usually unknown and unstructured (Mars, Moon). The pilot 

functions as an autonomous agent in a complex multi-agent architecture for the control and 

navigation of an autonomous robot. In this architecture, various agents are responsible for 

different tasks, and they might have to compete and cooperate for a successful completion of a 

particular navigation mission. They proposed a general architecture that uses a bidding 

mechanism to control the robot. In this case, they used it to coordinate the three systems that 

control the robot, which are navigation, vision, and pilot. 

 
The first project in the field of bicycle dynamics (Olsen and Papadopoulos, 1988) was 

created to apply modern scientific techniques to the engineering problems of the bicycle . They 

applied the mathematics to include the important aspects of geometry and mass replacement. 

They selected to work on a basic bicycle model that had rigid knife edged wheels, a rigid rear 

frame including a rigidly mounted and immobile rider, and a rigid steer able front fork, including 

front wheel, stem, and handlebar. The equations they obtained were not as straightforward as 

mass or spring fitness, but rather involved functions of bicycle velocity, frame geometry, and 

various characteristics of the bicycle and rider’s distribution of mass and also the leaning affects 

on steering and vice versa. 

 
Another project taken by Cornell Bicycle Research Project (Fuchs, 1998) considered 

minimizing the disturbing effects of steady crosswinds on single -track vehicles. The equation to 

calculate the equilibrium location of the center of pressure for zero steering angles in crosswinds - 



 4 

the ‘trim equation’ - has been derived. Using it, a single -track velomobile designer may trim their  

vehicle to achieve good handling characteristics under certain conditions (angle of attack); the 

torque that has to be exerted by the rider onto the handlebar may be minimized. But the fact that a 

vehicle is in trim at certain angles of attack does not assure safe handling in any situation that 

may be encountered in windy conditions on the street. For the first time it was mathematically 

shown that static stability of single -track vehicles in crosswinds is achieved when the center of 

pressure is in front of the center of mass. In this research they have not considered the dynamics 

of transition from one state of crosswind influence to another state of cross wind influence. 

 
Fajans (2000) considered centrifugal forces that will throw the bike over the side if the 

rider steers the handlebars in the opposite direction of the desired turn without first leaning the 

bike in to the turn. Leaning the bike into the turn allows for the gravitational forces to balance the 

centrifugal forces, leading to a controlled and stable turn. Thus steering a bike involves a 

complicated interaction between centrifugal and gravitational forces, and torques applied to the 

handlebars, all edited by the bike geometry. 

 
The genetic algorithms have been applied to local obstacle avoidance of a mobile robot in 

a given search space (Sedighi, Ashenayi, Manikas, Wainwright, Tai, 2004). In this research they 

have tried to derive not only a valid path but also an optimal one. The objectives were to 

minimize the length of the path and the number of turns taken by the robot to complete the path. 

They have also implemented a method that allows a free movement of the robot in any direction 

so that the path planner can handle complicated search spaces. 

 
The research for this thesis is a continuation of the project presented in (Vrajitoru, 

Mehler, 2004). Starting from the existing model for the motorcycle and the pilot, we apply  

genetic algorithms to configure the autonomous pilot. 
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This paper introduces an application that simulates a motorcycle that can be driven by 

both a human player and an autonomous pilot. The application is implemented based on the 

physical equations describing the vehicle’s attributes, motion, and road behavior. This application 

aims at controlling the vehicle in a non deterministic way inspired from the behavior of a human 

driver and using similar perceptual information to make decisions.  

The goal of this application is to simulate the behavior of a human driver under various 

circumstances on the road.  

 
The application presented in this paper (Vrajitoru, Mehler, 2004) is developed using the 

ideas and concepts that can be observed in game engines. It is implemented using the OpenGL 

library and provides real-time interaction for a human player. The visual interface of the 

application allows the human user to adjust the point of view and to drive the vehicle, which in 

this case is a motorcycle. The application includes an autonomous pilot that can be toggled on 

and off as well as a test circuit that the human or autonomous driver must attempt to complete. 

The autonomous  pilot is a multi-agent probabilistic application with a separate configuration 

interface where each agent is an independent process acting on one of the control units of the 

vehicle, as for example, the gas, the brakes, the handlebars, or the steering wheel. The agents use 

some information about the current status of the vehicle to make a decision about an action to be 

taken on their respective control units. This information includes both status data, like the current 

speed, and perceptual data, as the visible distance on the road in the direction of movement, the 

lateral distance to the border of the road, and the current slope. The performance of the 

autonomous pilot is compared with the performance of a trained human. 
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3. Motorcycle Modeling and Autonomous Pilot 
 

In this section we introduce the physical model of the motorcycle and the multi-agent 

autonomous pilot. 

 
3.1 The Vehicle Control and Degrees of Freedom 
 

The motorcycle is a single track vehicle (STV) modeled as a system of several units with 

various degrees of freedom as shown in Figure 1. The coordinate system relative to the 

motorcycle is also illustrated. The origin of the system is in the center of the motorcycle at the 

ground level. 

 
Figure 1. A motorcycle with control units and degrees of freedom 

 
The motorcycle has six degrees of freedom namely : 

• Rotation of the wheels around their local axes which are parallel to Oz. 

• The rotation of the handlebar and the front wheel around the fork axis (steering). 

• The front and back transla tion along the suspension axes. These components are not 

taken into account by our system. 

• The rotation of whole vehicle around the Ox axis in the relative system of coordinates 

(leaning). 
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The driver can control the vehicle with five the control units which are the handlebar 

(steering), leaning of the vehicle laterally, the throttle , and also the two brakes namely , front and 

rear. The state of the STV is described at any moment by the current position of the center of the 

vehicle  on the road and  the current direction of movement which can be described as a vector or 

as an angle in the (x,z) plane plus the slope, which is in general determined by the road. The 

model must also include the degrees of freedom for each of the control units. These components 

are in general defined relative to the STV’s internal system of reference. 

 
3.2 STV Motion and Co ntrol  
 

The STV is modeled as a reduced state system of continuous variables. The generalized 

coordinates at a particular moment are given by 

 q = (s, a, ?)  T  (1) 
 

where s(t) = (x(t),z(t)) represents the spatial position of the STV, 

 ? is orientation angle  determining the direction of movement d = (cos?, sin?), 

 a is the leaning angle . 

The state of the vehicle also involves F, the steering angle. The constraint imposed on this angle 

is –p/3 = F = p/3. The Figure 2 shows these angles and coordinates. 

 

 
Figure 2. STV coordinate system 

 
The vertical components of both s and d are determined by the road altitude and slope at 

the given spatial position and also by the vehicle orientation. In this thesis I have considered the 
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road to be close enough to the sea level such that the gravitational acceleration is the constant      

g = 9.8m/s2 and the altitude of the vehicle has no noticeable effect on the motion of the vehicle. 

 
Let s (s, d) be the angle  made by the contact line of the vehicle with the (x, z) plane, as 

determined by its position and orientation. 

 
The driver’s input to the system can be represented as follows. 

 u = (t, ßf,  ßr, F, a) (2) 
 

where t is the throttle  opening determining the acceleration in the direction of movement  d. 

  ßf,  ßr  are the front and rear brakes respectively , and  

F and a are the steering and leaning angles respectively. 

 
A nonholonomic system is one whose movement at any moment cannot instantly change 

direction, but is subject to certain constraints. In our case, the nonholonomic constraints arise 

from the fact that the motorcycle moves in the direction of wheels which is perpendicular to their 

main axis. A change in direction is not instantaneous, but determined by some actions (steering 

and leaning). This change has a limited range given by the maximum degree of freedom of the 

handlebar and maximum leaning that doesn’t cause the vehicle to fall. 

 
The nonholonomic constraints can be expressed by following, where b is the distance 

between the two contact points of the wheels on the ground. 

 -x'sin? + z'cos? = 0 (3) 
 
 bcosF ?' - sin(F+?)x' + cos(F+?)z' = 0 (4) 
 
 
where the single and double quotes are the standard notations for the first and second derivatives 

respectively with respect to the time. 
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Equation 3 represents the fact that the STV moves in the direction of the vector d. 

Equation 4 allows us to compute the change in orientation due to steering. In particular, if –p/2 = 

F = p/2, (heuristic) we can compute the change in the orientation angle due to steering as  

 ? ? = (sin (F+?) ? x - cos (F+?? z))/bcos F  (5) 
 
 

Let v = s'  be the momentary speed or velocity in the direction of movement, and a = v' = 

s? the momentary acceleration in the direction of movement. We implemented the motion of the 

vehicle using Newtonian mechanics. 

Let us consider the following notations: 

_ s(t) the spatial position of the object at time t, 

_ v(t) the momentary speed or velocity, v(t) = s '(t), 

_ a(t) the momentary acceleration, a(t) = v' '(t) = s? (t). 

By applying Newton’s laws of motion, we can derive the following system of equations 

to describe the spatial position of the motorcycle at the moment t +? t by  

 s(t +?t) = s(t)+ ?s (6) 
 
 v(t +?t) = v(t)+ ?v  (7) 
 
 ?s = d (v?t + a ?t 2/ 2)  (8) 
 
 ?v = a ?t   
 

In our case, the acceleration is defined by the throttle which determines the amount of 

fuel supplied to the engine, by the force applied to the brakes, by the friction force, and by the 

gravitational force when the road is not flat. The system is set in such a way that a given amount 

of gas supplied to the engine can only lead to accelerating the vehicle up to a speed limit 

depending on the amount of gas. This simulates the engine limitations of a real vehicle. The 

brakes do not act simply as a negative acceleration but also have the effect of adding to the 

friction and drag forces which otherwise just depend on the air and ground and are relatively very 

small. 
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 a = t + g sins  – k g coss - kb(Bf + Br) – D v2 (9) 
 

In this above equation, 

g = 9.8 m/s2 is the gravitational acceleration at the sea level, 

k = coefficient of friction, 

kb = coefficient of friction for the brakes, 

D = coefficient of drag, defined as the sum of the air resistance, the force applied to the 

brakes, and the engine brake, as follows 

 D = ka + kd(Bf + Br) + k e (10) 
 

where ka is the air resistance, kd is the coefficient of drag for the brakes, and k e represents the 

engine brake. 

These forces mentioned above cause the speed of the vehicle to become constant after a 

while for any given throttle opening t  as long as the road conditions are stable. Along with the 

friction force, they prevent a resting vehicle from going downhill if the slope s  is not null, and 

prevent the speed from increasing indefinitely due to gravitation in the direction of movement 

when the vehicle is going downhill. 

 
In this model of the motorcycle we also consider that when the motorcycle leans more 

than a threshold, the centrifuge force cannot compensate for the gravitation anymore and the 

vehicle falls down (crashes). The threshold depends on the speed, a higher speed allowing the 

vehicle to lean further without crashing. 

 
Leaning Equations  

The first force that we are going to consider that affects the change in direction of the vehicle due 

to leaning is the centrifuge force. This force is defined by 

 Fc =m? 2r (11) 
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where ?  is the angular speed, and r is the radius of the circle on which the object is 

turning. If v is the horizontal speed, then we can define the angular speed as ? = v/r, so 

the centrifuge force is equal to 

 

 
r

v
mFc

2

=  (12) 

 
A second force that interacts with the vehicle in the lateral movement is the lift due to 

friction with the air. We can adapt an equation taken from airplane wing simulation that computes 

the lifting force FL is given as 

 LrefL CSvF 2

2
1

ρ=  (13) 

 
In this equation ρ  is the air density, that we can consider to be approximately ρ  = 

1.22145kg/m3 at 0 altitude.Sref is the reference area, that we can compute as the horizontal 

projection of the vehicle. If Sv is the total porting lateral surface of the motorcycle and the driver, 

Sh  the porting horizontal surface of the motorcycle, and a is the angle made by the vertical axis of 

the motorcycle with the horizontal plane, then 

 Sref = Sv  cosa + Sh sina  (14) 
 

The last component of the lateral movement is the gravitational force itself, which has a 

norm equal to g m. From this force, we have to subtract the lifting force first. Starting from the 

same angle a, the resulting gravitation force which is  vertical is decomposed in a force along the 

vertical axis of the motorcycle and another one that is normal to the motorcycle. The rotation will 

be determined by the component that is perpendicular to the motorcycle axis. This component, 

that we call central gravitation and denote by Gc, is given by 

 Gc = (g m – FL) sina  (15) 
 

By imposing the condition that the central gravitational force should be equal to the 

centrifuge force, we can compute the rotation radius r:  
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αsin)(

2

LFmg
mv

r
−

=  (16) 

 
All of the forces and quantities involved in the description of the lateral movement are 

illustrated in Figure 3. 

 

  Figure 3. Forces and quantities involved in lateral movement 
 
3.3 Perceptual Information 

The autonomous pilot that is developed in this application is actually using perceptual 

information to make decisions in regard to the vehicle driving. This is done to simulate the 

perceptual cues from real life that a human driver pays attention to while driving the vehicle. In 

this application the cues given to the pilot are the following: 

 
The visible front distance, denoted by front, is defined as the distance from the current 

position of the vehicle in the direction of movement to the border of the road scaled by the length 

of the vehicle. This information tells us how much of the road is visible to the driver and also how 

straight the road is in front of the vehicle. We will also refer to this measure as the horizon. 

 
The front probes, denoted by frontl and frontr, are defined as the distances to the border 

of the road from the current position of the vehicle in directions rotated le ft and right by a small 

angle from the direction of the movement of the vehicle. This gives the pilot information 
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regarding  on which side of the current direction of motion the front distance would be greater, 

indicating which direction the road turns. 

 
The lateral distances, denoted by leftd  and rightd, define measures of the lateral distances 

from the vehicle to the border of the road, at a short distance in front of it, simulating what the 

pilot might be aware of without turning their head to look. A high value of this measure indicates 

a turn in the road or that the vehicle is close to the border. The value of this measure close to 0 

indicates that the vehicle is in the center of the road. 

 
The slope denoted by a slope, is a perceptual version of s  which is discretized to simulate 

the intuitive notion of the road inclination that a human driver would have, as for example almost 

flat, slightly inclined up or down. This simulates the fact that the pilot is not aware of the precise 

value of s . The Figure 4 represents the geometrical definition of the measures defined above. 

 

Figure 4. Perceptual information used by the autonomous pilot 

Apart from the perceptual information, the autonomous pilot uses the current status of the 

motorcycle to make decisions about the actions to be taken on each of the control units. The 

status includes measures like the current speed, the current opening of the throttle, the brakes, and 

current deviation of the handlebar from the direction of the movement. These values can be 

expressed as a tuple ( v, r, Bf , Br, F ). 
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3.4 Multi -Agent Pilot 

The autonomous pilot that was the starting point for this thesis is composed of several 

agents. The model is based on the fact that the motorcycle can be driven using several control 

units (CUs). Each of them is controlled by an independent agent with a probabilistic behavior. 

The agents are not active during the computation of every new frame simulating the evolution of 

the vehicle on the road, but only once in a while in a non-deterministic manner. This simulates 

the behavior of a human driver that may not be able to instantly adapt and take action based on 

the road situation and would require a certain reaction time. The minimal model requires a CU for 

the gas - throttle, which determines the acceleration, for the brakes, which can slow down or even 

stop the vehicle, and for the handlebar that controls the direction. 

 
Each of these control units is independently adjusted by an agent. The behavior of the 

agents depends on the status of the vehicle and is intended to drive the motorcycle safely in the 

middle of the road and at a safe speed as close as possible to a given limit. Each agent can have 

its own rate of interference with the coordination of the vehicle, and in our case, the agents 

controlling the throttle and the handlebar are in general more active than the agent controlling the 

brakes. 

 
Next we will introduce the equations used by each of agents to make a decision and 

perform an action. 

 
The Throttle  

This control unit is respons ible for controlling the opening of the throttle which 

determines the amount of fuel supplied to the engine and implicitly influences the speed of the 

vehicle. The input given to this agent can be represented by (v; front; leftd; rightd; slope). The 

agent uses a minimal speed threshold vlow, a maximal speed threshold over which the speed is 

considered unsafe, and the given speed limit vlimit. The agent aims to keep the vehicle speed above 



 15 

vlow and below the maximal one, and also close below the vlimit which is an external measure that 

does not depend on the configuration of the driver. 

 
The agent will determine the action to be taken based on the following considerations. If 

the lateral distance to the left is too different from the lateral distance to the right, the speed must 

be decreased because the road is most likely turning. The same rule applies to the visible distance 

in front of the driver: a short distance represents an unsafe road situation and the speed has to be 

decreased. 

Let t be the throttle opening at the moment t, which in turn determines the acceleration of 

the vehicle. Let us also denote by latnorm the normalized difference between the left and right 

distances as shown in Equation 17 and by latabs = ¦ latnorm ¦  the absolute value of this quantity. 

 
),max( rightdleftd

rightdleftd
lat norm

−
=  (17) 

Equation 18 presents the condition that must be fulfilled for the throttle to be increased or 

opened, which results in a higher acceleration followed by an incrementation of the speed. In this 

equation, vlow is a lower limit for the speed, thrlat is a threshold under which we consider that the 

difference between the left and right distances is still safe, thr front is the threshold for the safe 

front distance in front of the vehicle  vlimit is the upper speed limitation, like the legal speed limit 

on that road, and ctr is a constant. 
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Let us denote by trlat a quantity indicating if the normalized absolute difference between 

the left and right distances is safe for the vehicle’s current speed, as shown in Equation 19, where 

cvlat and pvlat are constants. For higher values of the speed, the safe difference is smaller. 

 trlat = latabs  -(Cvlat)/(1+v(t))1/pvlat)  (19) 
 

Let us denote by trfr a quantity indicating if the front distance is safe for the vehicle’s 

current speed, as shown in Equation 20 where cv fr and pvfr are constants. 

 tr fr = (cvfr /(1+v(t))1/pv fr)  - front  (20) 
 

Equation 21 represents the condition to be fulfilled for the throttle to be decreased or 

closed, which will have the effect of slowing down the vehicle under the influence of the friction 

force. 

 v(t) > vlimit and trlat > 0 and trfr > 0 (21) 
 

Let us denote by ?  t  = t  (t + ? t) - t  (t). The equation governing the change in throttle that 

the agent will perform based on the current vehicle and road status is illustrated by Equation 22, 

where cincv, cdecv, and csl are constants. The actual amount of the change is a probabilistic quantity 

equally distributed in a small neighborhood around the computed value. 

 ?  t  = cincv( front - thrfront)(v(t) - vlow)+  
 cdecv ((v(t) - vlimit ) + trlat +trfr)+csl slope (22) 

 
 

The actual ?  t  which will be applied is given by ?  t  actual = randouble(0.8,1.2) ?  t , where 

randouble is a function generating a real number uniformly in a given interval. This simulates the 

imprecision of a human driver and has no other physical meaning. For this reason we considered 

that the uniform distribution was sufficient. 

 
The Brakes 

The brakes agent is  using the same idea as we have seen for the throttle agent as it is 

assumed that all the rules which decide whether the speed should be reduced or increased are of 
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general purpose and apply to all of the agents that have an influence on the speed. The equations 

for this agent are simpler as the brakes can only reduce the speed at any time.  

 
Even though the constraints used in the equations for the brakes are the same for the 

throttle, the coefficients in these equations can have different values than those used for the 

throttle. As we know, the brakes are activated less frequently than the throttle when a human is 

driving a motor vehicle, because there is a seldom a need for such a drastic decrease in the speed 

that closing the throttle is not enough. 

 
Let us say that Br;f   is the amount of force applied to the brakes at time t. In our 

assumptions the force is distributed 60% on the front brakes and 40% on the back brakes. The 

brakes are handled by Equation 23 and have a probabilistic behavior similar to the throttle agent , 

but we can adjust the constants and thresholds independently of the agent controlling the throttle. 

 ? Br;f = cdecv ((v - vlimit )  + trlat +trfr) - cslope (23) 
 
From this equation we can see that a force is applied to the brakes if the speed is 

higher than the limit, if the front distance is too small, or if the vehicle is much closer to 

one lateral side of the road than to the other. 

 
The Handlebar 

This agent is in charge of controlling the handlebar of the motorcycle  and determines if 

the rotation should be applied to the handlebar at a given moment, and what should the rotation 

angle be. This is the equivalent of the steering wheel for a car when it has to make a turn. This 

agent is using the lateral distances to the border of the road that are leftd and rightd, and also 

frontl and frontd  which are the front probes. The agent turns the handlebar in the direction of the 

longer distance between frontd  and frontl which has the effect of getting away from the closest 

border. The agent first considers the distance to either side, given by lateral distances. Thus, if the 
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vehicle is not within a given percentage (20%), of the center of the road then the agent moves the 

handlebar to direct the vehicle towards the center of the road. 

 
If the first measure does not provide the conditions to make a turn, the agent estimates the 

distance forward to the horizon (or front distance). Based on the front probes and the front 

distance, the agent moves towards the center of the horizon. The angle by which the handlebar 

turns depends on the distance to the horizon: the angle is bigger if the horizon is closer. 

 
The agent decides whether to use the lateral distances as reference or the front probes 

based on criteria shown in equation 24. Let us denote by probe n the normalized difference 

between the front and right probes as in the equation below and by probeabs = | probenorm| the 

absolute quantity. 

 
),max( frontdfrontl
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−
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Let us denote by latdiff   the quantity used by agent to decide if it must turn in which 

direction as given by the equation below. 
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where thri, i = 1, 4 are configurable coefficients.  

The handlebar agent will update the position of the handlebar if the condition expressed 

in Equation 26 is fulfilled. This means that the change is necessary if the lateral difference 

measure is greater than the threshold thrlat, or if the distance in the direction of movement to the 

border is smaller than another threshold thrfront. 
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Let us denote ?F = F(t + ?t) – F(t) the change in the handlebar angle decided by the 

agent. Then the general rule for modifying the rotation of the handlebar is shown in Equation 27. 

The actual amount of the change is a probabilistic  quantity equally distributed in a small 

neighborhood around the computed value as in the following equation: ? F actual = randouble (0.8, 

1.2)* ? F . 

 ? F  = chbar( latdiff   +  (  thrfr -  front)/ thrf) (27) 
 
The amount of change in the direction of the handlebar depends on how different the le ft 

and the right lateral distances are either right next to the vehicle or at the intersection of the road 

in front of it, based on the measure of latdiff   and on the speed. If the motorcycle is at a lower 

speed the handlebar has to be turned more to achieve a given change in the direction. If the 

vehicle is moving at a higher speed then a small change in the orientation of the handle bar will 

obtain the same change in the direction. 

 
Leaning Agent 

The following which is in charge of controlling the leaning of the motorcycle. 

This agent also uses the lateral distances to the border of the road that are leftd and rightd  and 

also frontl and frontd  which are the front probes as used by the handlebar agent. The agent leans 

the vehicle in the direction of the longer distance between frontd  and frontl which has the effect 

of getting away from the closest border. The agent first considers the distance to either side, given 

by the lateral distances. This agent measures the distance forward to the horizon. If the 

motorcycle is not within the given percentage (20%) of the center of the road, then the agent 

checks whether the motorcycle in on left side of the road or on the right side of the road and it 

leans the vehicle towards the center of the road. If the distance to the horizon is smaller then it 

checks the whether the curve of the road is to the left or to the right and it leans accordingly. A 

condition is also checked to see if the motorcycle if already in left or right leaning mode. In that 

case the agent cannot lean again in the same mode. 



 20 

 
Alerting Agent 

Another agent which is important for the functionality of the motorcycle is the alerting 

agent which does not have any direct control on the vehicle , but interacts with other agents. While 

other agents are active occasionally, this agent is probing the vehicle and the road condition for 

every new frame and is capable of activating one of the other agents if the situation requires extra 

attention. That is if the speed of the vehicle is too slow or too fast, or if the visible front distance 

is too short, or if the difference between the left and right lateral distances is too high, then this 

agent considers the situation as not safe. In this case, the agent generates an event which 

randomly activates one of the agents that can take action and correct the issue. 

The following equations describe the conditions that must be true for the alerting agent to 

consider that the state of the vehicle is unsafe and trigger one of the agents coordinating the 

vehicle to take some action and correct the situation. The alerting agent will only generate an alert 

message but does not decide which other agent will perform the necessary action.  
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4. Pilot Testing and Evaluation 

In this section we discuss application details from the previous project and also some of 

the improvements done. 

 
4.1 Application Details from the Previous Project 

The application is capable of driving the motorcycle by receiving input from both a 

human player and an autonomous pilot. The circuit cons ists of 3 loops as in Figure 4 a portion of 

the road is elevated with respect to the rest of the road. The circuit is designed such that it will 
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test the ability of the pilot when road turns both left and right where the slope of the road is 

ascending and descending. 

 
The autonomous pilot was previously configured by hand and was capable of completing 

the circuit with some average speed considerably slower than the human player. The speed of the 

autonomous pilot showed an interesting behavior compared to the human player. In the case of 

the human player, the entire set of keys was hardly used and after the player is comfortable with 

speed of the vehicle they can complete the circuit by just using the lateral movement of the 

motorcycle. The pattern of variation in speed makes the simulation very close to the real life. In 

case of the autonomous pilot we can observe that autonomous pilot was more sensitive to the 

difference between left and the right distances to the border of the road. The number of turns 

taken is by the pilot was higher more compared to human driver. 

 
4.2 Testing for Completion of a Circuit 

The Figure 5 shows the perspective view of the circuit that has been used. 

 

Figure 5. The test circuit 

The Figure 6 shows the main window of the application displaying the motorcycle and 

the road with some perceptual cues, the outline of the road triangulation, and also the centerline. 

There is also a sub window containing a mini-map of the circuit  which shows the position of the 

motorcycle. This helps the human player to locate the position of the vehicle on the entire circuit  

and lets them know how much of the circuit has been completed. 
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Figure 6.The main application window displaying the vehicle 

 

In order to improve the GUI, I used texture mapping in OpenGL library to add some 

banners to the scene. One of them can be observed in Figure 6. This is very helpful for tracking 

the position of the vehicle. 

In the previous version of this application there was no functionality to check the 

completion of the circuit. So the user had to toggle  the pilot off after they observed that the 

motorcycle  did complete a circuit. Part of my work has focused on checking for the completion of 

a circuit. For implementing this I considered a centerline which was drawn on this road. Since the 

motorcycle starts from the initial position I calculated the minimum distance between the position 

of the motorcycle and the centerline coordinates. After the motorcycle starts its motion, at every 

frame I check which of the centerline points the motorcycle is the closest to. A counter is keeping 

track of how many times the vehicle is closest to each point of the centerline. Each time I check 

whether the current position is the closest to the same centerline point as before or if it is nearer to 

the previous point (in this case the motorcycle is going backwards) or to the front point (in this 

case the motorcycle is moving forward). In a perfect case, the motorcycle will pass next to all of 

the centerline points once. The value of the counter for a point being greater than 0 means that the 
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vehicle was closest to that point at least once. These counters will show the behavior of the 

vehicle and can be used to test the completion of the circuit. 

 
4.3 Testing for Different Crashing Conditions 

There are four possible cases in which the test of one circuit ends when the motorcycle runs 

in the pilot mode. In first 3 cases we consider that the circuit was not completed (failure). 

• If the leaning angle of the motorcycle is higher than a threshold at some point,  the 

vehicle loses balance and falls (crashes). 

• The motorcycle exits the road and does not return to it soon enough.  

• The motorcycle makes a turn and returns back to the starting position without completion 

of the circuit. 

• The motorcycle completes the circuit without crashing. 

In order to improve on the first crashing condition, I adjusted the crashing threshold, such 

that the motorcycle crashes at a higher lateral angle. This feature is now more realistic. For the 

second failure condition I added a timer to calculate for how long the vehicle is off the road. If the 

vehicle stays off of the road for more than 1 minute then I will reset the motorcycle to its initial 

position. 

 
In third case the motorcycle will not crash, but it may deviate in and out off the road 

several times and possibly take a hard turn that takes it backward so that it reaches the starting 

point again without traversing the entire circuit.. This case can be tested by checking the counters 

for the centerline points. If the total number of points that the vehicle passed next to is less than 

the total number of points on the centerline, then we can deduce that the autonomous pilot did not 

complete the circuit. 
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In the fourth case the motorcycle completes the circuit. The test for this condition is that 

the motorcycle reaches the starting point again and all the centerline points show counters with 

positive values. 

 
The general test will start from a given position on the road ((0, 0, 0) –starting position). 

The pilot is toggled on with a speed of 0, and then allowed to run until some ending condition is  

met. At that moment we output and store the statistics. In each trial run of the motorcycle we are 

interested in following statistics: 

• Total time: total time pilot was on (t). 

• Average speed and maximum speed (v and max v). 

• Total distance covered. This is a measure of how efficiently the pilot has completed the 

circuit. 

• Total number of times the vehicle left the road and average time spent off the road. 

• Total number of left and right turns. 

• Total number of left and right leans. 

• Average lean angle when leaning left or right. 

• Average lateral balance: a balance of 0 is achieved when the vehicle is in the center of the 

road and of 1 when the vehicle is on the border. A lower balance indicates a better road 

behavior of the pilot. 

• Circuit completed or not completed. 

 
4.4 Improvements to the Graphical Application 

In the application before the leaning angle of the vehicle was such that even some 

increase in the leaning angle used to make the motorcycle uncontrollable and the vehicle would 

go off the road when making a turn in the case where the road is elevated (uphill). I adjusted the 

leaning angle such that the vehicle can lean to a higher extent and more efficiently. 
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The crashing angle in the previous setup was such that even if the vehicle was leaning to 

a small extent, it would crash very often. I adjusted the crash angle such that even if the vehicle 

leans to a higher extent, it can be made to regain its upright position. 

 
I added some functionality to the motorcycle such that if the vehicle crashes, it can be 

restarted from the same position. I also attached controls in the human player mode such that if 

the vehicle crashes outside the road it can be pulled back or pushed front with a small constant 

speed. This is the equivalent to a manual pull and push of the vehicle in real life. 

 
As I needed to run the motorcycle  for a number of trials in order to compare the behavior 

of the motorcycle under various conditions, I added a functionality to run the motorcycle in the 

pilot mode for a given number of times. All of the statistics will be stored in a result file. 

 
5. Application of Genetic Algorithms 

In this section we introduce the genetic algorithms, the operations, their application, and 

also an example of GA explained for a particular problem. 

 
5.1 Introduction to Genetic Algorithms 

Genetic algorithms (GA) (Holland, 1975; Goldberg 1989) are a part of evolutionary 

computing, which is a rapidly growing area in the field of artificial intelligence. These algorithms 

are based on Darwin’s theory of evolution. This means that problems are solved by an 

evolutionary process which is used to optimize the solutions to a given problem (the solution is 

not always the best). A GA uses a probabilistic process to find approximate solutions to difficult-

to-solve problems through application of the principles of evolutionary biology to computer 

science. Genetic algorithms use biologically-derived techniques such as inheritance, mutation, 

natural selection, and recombination (or crossover). 
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Genetic algorithms are typically implemented as a computer simulation in which a 

population of abstract representations (called chromosomes) of candidate solutions to an 

optimization problem (called individuals) taken from a search space evolves toward better 

solutions.  

Traditionally, potential solutions are represented as binary strings of 0 and 1 values called 

genes. The evolution starts from a population of completely random individuals and takes place 

in several generations. In each generation, multiple individuals are stochastically selected from 

the current population, modified (mutated or recombined) to form a new population, which 

becomes the current population in the next iteration of the algorithm. 

A measure of how good a solution is to solve the problem, called fitness function, is also 

necessary in the evolutionary process. 

 
5.2 Comparison of Natural and GA Terminology 

The strings of artificial genetic systems are analogous to chromosomes in biological 

systems. In natural systems, one or more chromosomes combine to form the total genetic 

prescription for the construction and operation of some organism. In natural systems the total 

genetic package is called genotype. In artificial genetic systems the total package is called a 

structure. In natural systems the organism formed by the interaction of total genetic package is 

called the phenotype. In artificial genetic systems, the structure decode to form a particular 

parameter set, solution alternative, or point (in the solution space). In natural terminology, we 

say that chromosomes are composed of genes which may take a number of values called alleles 

and in artificial intelligence we say that strings are composed of features or detectors, which take 

one of the possible values. The position of the gene is called locus and in artificial genetic 

systems we say it is the string position.  
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5.3 Operation of a GA 

The algorithm begins with a set of candidate solutions (represented by chromosomes) 

called population. Potential solutions from one population are taken and used to form a new 

population. This is motivated by a hope, that the new population will be better than the old one. 

This assumption was partially explained by the schemata theorem (Goldberg 1989). From the 

current individuals some are selected to form new potential solutions (offspring). This process 

uses the fitness of each individual such that the more suitable they are as candidate solutions to 

the problem, the more chances they have to reproduce.  

This process is repeated until some condition (for example achieving a given number of 

generations or a given improvement of the best potential solution) is satisfied.  

Outline of the Basic Genetic Algorithm  

1. [Start] Generate random population of n chromosomes (potential solutions for the 

problem)  

2 [Loop] over the following steps until a convergence condition is satisfied. 

1. [Fitness] Evaluate the fitness f(x) of each chromosome x in the population  

2. [New population] Create a new population by repeating following steps until the 

new population is complete  

3. [Selection] Select two parent chromosomes from a population according to their 

fitness (the better fitness, the bigger chance to be selected)  

4. [Crossover] With a crossover probability cross over the parents to form new 

ones (offspring or children). If no crossover was performed, the offspring is the 

exact copy of the parents.  
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5. [Mutation] With a mutation probability, mutate the new offspring at each locus 

(position in chromosome).  

6. [Accepting] Place the new offspring in the new population. 

7. [Replace] Use new generated population for a further run of the algorithm. 

8. [Test] If the end condition is satisfied, stop, and return the best solution in 

current population  

3 [Return] the best solution in the last generation.  

 
5.4 Genetic Algorithm Explained with an Example 

Initial Population 

A genetic algorithm starts with a population of strings to be able to generate successive 

populations of strings afterwards. The initialization is done randomly. This means to say that 

every gene is set to 0 or 1, with each value having a chance of 50% to occur. 

 
In our problem we have chosen each of the parameters with a 10 bits representation. Each 

of them has the inferior limit of 0 and maximum of 10. In order to explain this better, let us 

consider an example . Suppose we need to find the maximum of the function  

 u(x, y) = (x – 7)2 + (y – 3)2 (29) 
 
with both x and y taking values in an interval range of [0,7]. 
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Figure 7. Graph of the function u(x,y) = (x-7)2 + (y-3)2 

 

We need to generate a code for this problem. A binary representation of six bits has been 

chosen, where the three bits on the left represent x and the three bits on right represent y. 

Let us assume that the following table represents the initial population of strings selected by 

successive flip of coins. 

 

Table 1. Initial population 

Number String Values 

1 100001 (x = 4, y =1) 

2 001100 (x= 1, y = 4) 

3 110010 (x =6, y = 4) 

4 000100 (x = 0, y = 4) 

 
Evaluation 

After every generated population, every individual in the population must be evaluated so 

that we can select the better ones. This is done by comparing the individuals with the fitness 

function. In this case we consider f(x) = u(x). By substituting the values of x and y in the equation 

we get the fitness of 13, 37, 2, 50 for the initial population. 
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Reproduction 

It is very important to decide which individuals will be chosen for the purpose of 

procreation. In GA this selection is based on the string fitness. According to the ‘survival of 

fittest’ principle , if a string A is twice as fit as string B, then A is expected to appear twice as 

much in the next generation. This kind of implementation of the reproduction is done by creating 

a biased roulette wheel where each current string in the population has a roulette wheel slot sized 

in proportion to its fitness [Goldberg, 1989]. By dividing the individual fitness by the average of 

all fitness values, we can calculate the expected count of this individual in next generation. In the 

example we explain, the average fitness in 25.5. So the expected count of individual one in the 

next generation is 13/25.5. = 0.52. Other expected counts are shown in table 2, as well as the 

normalized fitness values, which are equal to the fitness values divided by the total sum of all 

fitness values (102 in our example), multiplied by 100%. The normalized fitness gives the chance 

of an individual to be chosen as a parent. A method to actually select an individual as a parent is 

to use a sum function Si = ?  i
j=1 fi, (the sum of all fitness values from individual one to individual 

i), and randomly and uniformly choose an integer between 0 and the sum of all fitness values. 

The first individual whose Si is equal or greater than this integer will be chosen as a parent. The Si 

values are shown in table 3. For example, suppose that the randomly chosen number is 53, then 

the individual 4 will be chosen as a parent because S4 is the first value that succeeds 53. This 

routine will be repeated until we have 4 parents. 
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The parent is as shown in Table 2 below. 

Table 2. Reproduction results 

Number String (x,y) Fitness Normalized Si Expected 

count 

Actual 

1 100001 (4,1) 13 12.7% 13 0.51 1 

2 001100 (1,4) 37 36.3% 50 1.45 1 

3 110010 (6,2) 2 0.20% 52 0.08 0 

4 000100 (0,4) 50 49.0% 102 1.96 2 

 

Crossover 

Once the two parents are selected from the previous step, the genetic algorithm combines 

them to create two new offspring. Combination is done by the crossover operator. We have 

selected the one-point crossover for our experiments. 

 
One-point crossover 

A random crossover point is selected. The first part of the first parent is combined with 

the second part of the second parent to make the first offspring. The second offspring will be built 

from the second part of the first parent and first part of the second one. 

For the example we have chosen above, the random crossover point is selected between the last 

two genes. 

 
 
Parent #1: 10000 | 1 

Parent#2:  11001 | 0 

The resulting offspring is as following: 

Offspring #1 : 100000 

Offspring #2: 110011 
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One of the most important aspects of crossover is that one-point crossover cannot 

generate certain combinations of features encoded on chromosomes: schemata with a large 

defining length are easily disrupted. It is also possible that certain elements are not allowed to 

appear more than once. In that case, precautions have to be taken. 

 
Two-Point crossover 

The two-point crossover operator differs from the one point crossover in the fact that two 

crossover points are selected for the operation. Starting from the same parents as above, let us 

suppose that the crossover points are chosen as shown below: 

Parent #1: 100 | 00| 1 

Parent#2:  110 | 01| 0 

The offspring in this case will be the following: 

Offspring #1: 100 | 01 | 0 

Offspring #2: 110 | 00 | 1 

 
Uniform crossover 

In the uniform crossover each gene is selected randomly, whether from the first part 

parent or from the second one, with a certain probability. 

Parent #1: 100001 

Parent#2:  110010 

 

The offspring in this case is as follows 

Offspring #1 : 110000 

Offspring #2: 100011 
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Mutation 
 

The mutation is the genetic operator that randomly changes one or more of the 

chromosome's genes. The purpose of the mutation operator is to prevent the genetic population 

from converging to a local minimum and to introduce in the population new possible solutions. 

The mutation is carried out according to the mutation probability. 

 
The mutating operator simply tosses a biased coin with probability pmutate(which is very 

small) at each bit and, according to that result, changes a 1 into a 0 and vice versa. 

 Table 3 shows the result of the mutation operator. 

    Table 3. Mutation operation 

Before Mutation After Mutation 

101100 100100 

 

Table 4. New population and fitness after crossover and mutation 

Number Selected parents After crossover After mutation New fitness 

1 10|0001 101100 100100 10 

2 00|1100 000001 000001 53 

3 00010|0 000100 000100 50 

4 00010|0 000100 000100 50 

 

As we expected, a new string with high fitness has appeared. The sum of the fitness in the 

population increased from 102 to 163 and the average has also increased from 25.5 to 40.8. In the 

initial population, strings 1 and 2 were selected (average fitness), string 3 was not selected (low 

fitness) and string 4 was selected twice due to its high fitness. Crossover helped us by providing 

the high fitness string 000001(string2) and also string1 which has a lower fitness of 10. 
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This process of reproduction crossover and mutation is carried out until there is no further 

change in terms of fitness. Then we say that we have reached the optimal fitness value for the 

given problem. 

 
5.5 Applications of Genetic Algorithms 

GAs are widely used in various types of problem solving, for modeling, and also in 

various scientific, and engineering problems. 

Following are some of the applications of GA 

• Optimization: GAs are used in a wide variety of optimization tasks like numerical 

optimization, and combinational optimization problems such as travelling salesman 

problem(TSP), circuit design, job shop scheduling, and video and sound quality 

optimization.  

• Automatic Programming: used to evolve computer programs for specific tasks, and to 

design other computational structures, for example, cellular automata and sorting 

networks.  

• Machine and robot learning: used for many machine- learning applications, including 

classification and prediction, and protein structure prediction. GAs have also been used to 

design neural networks, to evolve rules for learning classifier systems or symbolic 

production systems, and to design and control robots. 

• Economic models : used to model processes of innovation, the development of bidding 

strategies, and the emergence of economic markets. 

• Immune system models : used to model various aspects of the natural immune system, 

including somatic mutation during an individual's lifetime and the discovery of multi-

gene families during evolutionary time. 

• Ecological models : used to model ecological phenomena such as biological arms races, 

host-parasite co-evolutions, symbiosis and resource flow in ecologies. 
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5.6 Genetic Representation of the Motorcycle Pilot 

To apply the GAs to our problem we need to find a good representation of the potential 

solutions as chromosomes and to find a good fitness function. The behavior of the agents is 

described by some equations. For example , in Section 3.4 we have introduced the throttle agent. 

The genetic representation of this agent starts with the sequence of all configurable parameters 

occurring in equations (17) to (22). 

S = (latnorm, leftd,rightd, v(t), vlow, latabs, thrlat, front,  thr front,  vrlimit, ctr  , tr(t), trlat ,pvlat, trfr, cvfr,, pvfr, 

cincv, cdec, csl ) 

 
These are all real numbers that we can further represent as a sequence of binary genes 

(for example 10 genes for each parameter). For example , if the 0 = thrfront  = 10, then the sequence 

00….0 will represent thrfront = 0, 11…1 will represent thrfront = 10, 10…0 for thrfront =  5, and so on.  

This idea is shown in Equation 30. 
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 (30) 

 
where L is any sequence of bits. In our case we start with lower = 0 and upper = 10. More 

precisely, the sequence 1000110111 can be converted as: 

 

real( 1000110111) = 1(5) + 0(2.5) + 0(1.25) + 0(0.625) + 1(0.3125) + 1(0.15625) + 0(0.078125)  

+ 1(0.0390625) + 1(0.0195312) + 1(0.0097656) 

     ˜   5.5371093 
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The final chromosome is a concatenation of all these sequences of genes for all of the 

parameters. There are 32 parameters total for our pilot and so the chromosomes have a length of 

320. 

 
The fitness function will be computed by running the motorcycle in a non-graphical 

environment over the entire circuit using the real representation of the chromosome as 

configuration for the autonomous pilot. The criteria for computing the fitness will involve how 

far the pilot went on the circuit before crashing or getting out of the road, and how fast it 

completed the circuit in case of success. 

 
At the end of experiments, the parameters derived by the GAs can be imported back into 

the graphical application for a visual verification of the quality of the solution and for testing the 

pilot with these new parameters under the same conditions as we have done for the manually 

configured one. 

 
Fitness Function 
 

The fitness function to evaluate the quality of the pilot represented by a chromosome was 

defined as below 

Let  

 F(x) = Fitness Function 

 dm = number of points touched by the motorcycle  

 dt =  total number of points 

 tm = total time taken by the motor cycle before crashing or completing the circuit 

Each time this fitness value is noted and at the end of number of generations  
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The second part of the Equation 31 is designed to put higher accent on the percentage of 

the circuit completed by the pilot than on the time when circuit was not completed. 

 
Implementation Details 

Figures 8, 9, 10, 11shows the interface to the genetic algorithm with the settings we have 

used for our experiments. 

   

Figure 8. Main application screen GA settings       Figure 9. Running options settings 

  

Figure 10. Evaluation options settings   Figure 11. Running options settings 
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6. Comparison Study 

Table 5 shows the statistics for two human players reported in (Vrajitoru, Mehler, 2004). 

We include these results so that they can be compared with the autonomous pilot. 

Table 5.Statistics for two human players 

Steering 
Measure Human1 Human2 

Total time 97.4 79.2 
Total distance 2312.05 2316.83 
Speed 6.19 8.94 
Max speed 8.75 12.26 
Lateral balance 0.29 0.36 
Left turns 121.4 119.2 
Right turns 51.4 47 
Times it left the road 0 0.4 
Recovery Time 0 11.2 
Number of circuits 100% 100% 
Perfect circuits 100% 60% 

 
 In order to compare the behavior of the motorcycle in case of using genetic algorithm 

with the heuristic approach, Table 6 show the results obtained in steering and leaning mode for 

100 trials before applying the genetic algorithms. 

 
From Table 6 we can see that the autonomous pilot was capable of completing the circuit 

92% of the time in approximately 6.5 minutes on the average. The pilot did not complete the 

circuit in the leaning mode.  

 
The average completion time for the human players shown in Table 5 was approximately 

1.5 minutes, so the autonomous pilot configured manually showed a fairly lower performance 

than the human players. 
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Table 6. Average result of 100 trails 

Steering Leaning 

Measure 
Completed 

circuits 
Incomplete 

circuits 
Incomplete 

circuits 
Total time 327.75 78.25 15.79 
Total distance 2338.77 720.421 77.2304 
Speed 1.95824 2.58261 1.24538 
Max speed 4.98943 4.95509 2.5573 
Lateral balance 0.323663 0.327008 0.547597 
Left turns 128.457 45.75 0 
Right turns 58.3804 22.25 0 
Left leans 0 0 4.53 
Right leans 0 0 7.74 
Leaning angle to the left  0 0 -7.60397 
Frames leaning left 0 0 105.1 
Leaning angle to the right 0 0 9.00594 
Frames leaning right 0 0 25.16 
Times it left the road 0.347826 1.75 0.4 
Frames spent out of the road 2.30435 8.625 15.545 
Number of circuits 92 8 100 

 
 

The Table  7 shows the average fitness function for both leaning mode and steering mode 

which is obtained by GA. 

Table 7. Average fitness in 100 trails for 100 generations 
Generation Steer Lean 

0 1.76074 0.273014 
10 1.80534 0.311289 
20 1.84572 0.327876 
30 1.85608 0.33766 
40 1.86285 0.344841 
50 1.86695 0.35315 
60 1.88226 0.358102 
70 1.8854 0.363652 
80 1.90286 0.369676 
90 1.90404 0.379083 

100 1.90845 0.380829 
 

Figure 11 shows the graph of the average fitness evolution in the steering and leaning 

mode during the execution of the GA. This shows the best average fitness achieved in 100 

generations is around 1.9 in the steer mode and the best fitness is 0.38 in lean mode. 
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Figure 12. Average fitness in steering and leaning mode with the GA 

All the trial runs are done in the non GUI mode for GA parameter calculation. So in order 

to visually verify the obtained results, I imported the parameters derived by the best GA run back 

into the GUI application of the motorcycle and did a run in steering and leaning mode for 100 

trials. The results obtained are as in Table 8 below. 

 
From Table 6 and Table 8 it is clearly evident that the time taken by the motorcycle is 

reduced by 60%, the speed of the motorcycle has increased by more than 100% in steering mode 

with parameters obtained by the GA. Also we can observe that in steering mode in Table 6 there 

are 6 incompleted circuits in steer mode, but with the parameters derived by the GA, all of the 

100 circuits are completed in steer mode. 

 
There is also one more interesting result in the behavior of the motorcycle in lean mode 

that can be observed after applying the GA. In Table 6 as we see there are no completed circuits 

in lean mode whereas by applying the parameters obtained from the GA, we observe there are 

one circuit completed the by motorcycle. The average time that the morotcycle spends on the road 

before crashing in case of the incomplete circuits has also increased from 15.79s to 52.6s which is 

333.12%.  
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Table 8. Verification of GA parameters in motorcycle  GUI application 

Steering Leaning 

Measure Completed circuits 
Completed 

circuits 
Incomplete 

circuits 

Total time 133.73 221 52.596 
Total distance 2333.33 2356.08 522.457 

Speed 4.16 2.7354 2.07084 

Max speed 6.48 6.07947 5.08668 
Lateral balance 0.4 0.396827 0.463341 

Left turns 112.04 0 0 
Right turns 113.51 0 0 

Left leans 0 5 4.79798 

Right leans 0 4 4.63636 
Leaning angle to the left  0 -3 -4.00343 

Frames leaning left 0 2724 633.121 
Leaning angle to the right 0 3 4.29006 

Frames leaning right 0 1444 285.253 

Times it left the road 0.54 0 0.020202 
Frames spent out of the 
road 2.89 0 1.0101 
Number of circuits 100 1 99 
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7. Conclusions 

In this thesis it has been shown that genetic algorithm performed better in choosing the 

coefficients that determine the behavior of the pilot than the manual configuration of the pilot 

chosen by the user in previous application. The experiments in Section 6 have shown that the 

autonomous pilot is capable of successfully driving the motorcycle over the entire length of a test 

circuit in conditions that are comparable to human driver. The time taken by the driver to 

complete a circuit using GAs is less than 50% of the time compared to the previous settings of the 

pilot. We observe that the number of left and right turns taken by the driver in the case of GA is 

lot lower which indicates a higher performance in choosing the correct path on the road. In the 

previous application the driver was more sensitive to the differences in left and right distances 

than a human player and the general impression of the ride was less smooth. Using GA’s the 

motorcycle ride is smoother and the simulation is closer to a real life situation. 

 
Our experiments have set the premises for a more complete and thorough evaluation of 

the autonomous pilot and have proven that the genetic algorithms represent a valid approach for 

successfully and efficiently configuring the autonomous pilot. 

 
The application of GA presented in this thesis can be extended to other types of vehicles 

or to autonomous robots. 
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