

THE DESIGN AND IMPLEMENTATION OF AN E-COMMERCE

SITE FOR ONLINE BOOK SALES

By

Swapna Kodali

Project Report Submitted to the faculty of the

University Graduate School

in partial fulfillment of the requirements

for the degree

Master of Science

in the

Department of Computer and Information Sciences

Indiana University South Bend

May 2007

Committee Members:

Dr. Hossein Hakimzadeh, Advisor

Dr. Dana Vrajitoru

Dr. Morteza Shafii Mousavi

ii

iii

©2007

Swapna Kodali

All Rights Reserved

iv

Abstract

 The business-to-consumer aspect of electronic commerce (e-commerce) is the

most visible business use of the World Wide Web. The primary goal of an e-commerce

site is to sell goods and services online.

 This project deals with developing an e-commerce website for Online Book Sale.

It provides the user with a catalog of different books available for purchase in the store.

In order to facilitate online purchase a shopping cart is provided to the user. The system

is implemented using a 3-tier approach, with a backend database, a middle tier of

Microsoft Internet Information Services (IIS) and ASP.NET, and a web browser as the

front end client.

 In order to develop an e-commerce website, a number of Technologies must be

studied and understood. These include multi-tiered architecture, server and client side

scripting techniques, implementation technologies such as ASP.NET, programming

language (such as C#, VB.NET), relational databases (such as MySQL, Access).

 This is a project with the objective to develop a basic website where a consumer

is provided with a shopping cart application and also to know about the technologies used

to develop such an application.

 This document will discuss each of the underlying technologies to create and

implement an e-commerce website.

v

ACKNOWLEDGMENTS

In completing this graduate project I have been fortunate to have help, support

and encouragement from many people. I would like to acknowledge them for their

cooperation.

First, I would like to thank Dr.Hossein Hakimzadeh, my project advisor, for

guiding me through each and every step of the process with knowledge and support.

Thank you for your advice, guidance and assistance.

I would also like to thank Dr.Shafii Mousavi and Dr.Dana Vrajitoru, my project

committee members, who showed immense patience and understanding throughout the

project and provided suggestions.

Finally, I would like to dedicate this project to my parents, my husband Ram and

my friends Kumar and Soumya, for their love, encouragement and help throughout the

project.

vi

TABLE OF CONTENTS

1. INTRODUCTION... 1

2. LITERATURE REVIEW .. 1

3. PROJECT DESIGN.. 3

3.1 DATA MODEL.. 4
3.1.1 Database Design.. 6

3.2. PROCESS MODEL ... 10
3.2.1. Functional Decomposition Diagram... 10
3.2.2 Data Flow Diagram (DFD).. 12

3.3 USER INTERFACE DESIGN .. 19

4. IMPLEMENTATION TECHNOLOGIES... 23

4.1. INTERNET INFORMATION SERVICES (IIS) .. 24
4.2 ASP.NET .. 25

4.2.1. Authentication in ASP.NET .. 26
4.3. MYSQL DATABASE ... 27
4.4. INTEGRATING IIS AND ASP.NET ... 28
4.5. INTEGRATING THE WEBSITE AND DATABASE... 29

5. WEB PAGE PROGRAMMING OPTIONS... 30

5.1. SERVER-SIDE PROCESSING. ... 31
5.2. CLIENT-SIDE PROCESSING. ... 35

6. WEB BASED APPLICATION DEVELOPMENT.. 36

7. DATABASE CONNECTIVITY .. 38

7.1 ADO.NET... 38
7.2 CONNECTING ASP.NET APPLICATION TO A DATABASE....................................... 45

8. THE SHOPPING CART APPLICATION .. 46

8.1. SEARCH FOR BOOKS .. 48
8.2. REGISTRATION... 49
8.3. USER DETAILS ... 50
8.4. SHOPPING CART .. 51
8.5. PLACE AN ORDER .. 52
8.6. CHECK OUT ... 54
8.7. PURCHASE HISTORY.. 56
8.8. TRANSACTIONS IN THE APPLICATION... 61

9. LIMITATIONS AND FUTURE DEVELOPMENT.. 65

10. CONCLUSION ... 65

11. BIBLIOGRAPHY... 67

vii

LIST OF FIGURES

FIGURE 1 ENTITY RELATIONSHIP DIAGRAM (ERD) ... 4
FIGURE 2 FUNCTIONAL DECOMPOSITION DIAGRAM... 11
FIGURE 3 CUSTOMER - BROWSE CONTEXT DFD.. 13
FIGURE 4 CUSTOMER - BROWSE DETAILED DFD... 13
FIGURE 5 CUSTOMER – SHOPPING CART CONTEXT DFD... 14
FIGURE 6 CUSTOMER - SHOPPING CART DETAILED DFD... 14
FIGURE 7 CUSTOMER - SHOPPING CART DETAILED DFD... 15
FIGURE 8 CUSTOMER - SHOPPING CART DETAILED DFD... 15
FIGURE 9 CUSTOMER – AUTHENTICATION – USERPROFILE DFD....................................... 16
FIGURE 10 AUTHENTICATED USER-PURCHASE CONTEXT DFD... 16
FIGURE 11 CUSTOMER - AUTHENTICATION - PURCHASE DFD... 17
FIGURE 12 CUSTOMER - NEWUSERREGISTRATION DFD ... 18
FIGURE 13 ADMINSTRATOR CONTEXT DFD .. 18
FIGURE 14 ADMINISTRATOR DETAILED DFD .. 18
FIGURE 15 MENU ... 19
FIGURE 16 DISPLAY OF BOOKS PRESENT IN THE STORE... 19
FIGURE 17 FOR SEARCHING THE BOOKS IN THE STORE ... 20
FIGURE 18 SHOPPING CART FOR THE USER... 20
FIGURE 19 REGISTRATION OF THE NEW USER ... 21
FIGURE 20 AUTHENTICATION OF THE USER .. 22
FIGURE 21 RELATION BETWEEN IIS AND ASP.NET... 23
FIGURE 22 WEB PAGE PROGRAMMING OPTIONS ... 30
FIGURE 23 COMPILED SERVER PROGRAMS FLOWCHART... 31
FIGURE 24 ADO.NET ARCHITECTURE .. 43
FIGURE 25 BOOK DETAILS ... 47
FIGURE 26 SERACH FOR BOOKS.. 48
FIGURE 27 NEW USER REGISTRATION... 49
FIGURE 28 USER DETAILS .. 50
FIGURE 29 SHOPPING CART .. 51
FIGURE 30 ORDER DETAILS ... 52
FIGURE 31SHIPPING DETAILS ... 53
FIGURE 32CHECK OUT ... 54
FIGURE 33 ORDER CONFIRMATION... 55
FIGURE 34 UPDATED INVENTORY AFTER ORDER PLACEMENT .. 55
FIGURE 35 PURCHASE HISTORY.. 56
FIGURE 36 BOOK DETAILS .. 57
FIGURE 37 ADMINISTRATOR - MODIFY BOOKS... 58
FIGURE 38 DETAILS ABOUT NEW BOOK .. 59
FIGURE 39 UPDATED INVENTORY.. 60

LIST OF TABLES

TABLE 1PROCESSING TECHNOLOGY FOR DIFFERENT FILE EXTENSIONS............................. 33
TABLE 2 TRANSACTION ATTRIBUTES ... 64

1

1. Introduction

 E-commerce is fast gaining ground as an accepted and used business paradigm.

More and more business houses are implementing web sites providing functionality for

performing commercial transactions over the web. It is reasonable to say that the process

of shopping on the web is becoming commonplace.

The objective of this project is to develop a general purpose e-commerce store

where any product (such as books, CDs, computers, mobile phones, electronic items, and

home appliances) can be bought from the comfort of home through the Internet.

However, for implementation purposes, this paper will deal with an online book store.

 An online store is a virtual store on the Internet where customers can browse the

catalog and select products of interest. The selected items may be collected in a shopping

cart. At checkout time, the items in the shopping cart will be presented as an order. At

that time, more information will be needed to complete the transaction. Usually, the

customer will be asked to fill or select a billing address, a shipping address, a shipping

option, and payment information such as credit card number. An e-mail notification is

sent to the customer as soon as the order is placed.

2. Literature Review

 Electronic Commerce (e-commerce) applications support the interaction between

different parties participating in a commerce transaction via the network, as well as the

management of the data involved in the process [2].

The increasing importance of e-commerce is apparent in the study conducted by

researches at the GVU (Graphics, Visualization, and Usability) Center at the Georgia

Institute of Technology. In their summary of the findings from the eighth survey, the

researchers report that “e-commerce is taking off both in terms of the number of users

shopping as well as the total amount people are spending via Internet based transactions”.

2

Over three quarters of the 10,000 respondents report having purchased items online. The

most cited reason for using the web for personal shopping was convenience (65%),

followed by availability of vendor information (60%), no pressure form sales person

(55%) and saving time (53%).

 Although the issue of security remains the primary reason why more people do

not purchase items online, the GVA survey also indicates that faith in the security of e-

commerce is increasing. As more people gain confidence in current encryption

technologies, more and more users can be expected to frequently purchase items online

[11].

 A good e-commerce site should present the following factors to the customers for

better usability [11]:

• Knowing when an item was saved or not saved in the shopping cart.

• Returning to different parts of the site after adding an item to the shopping cart.

• Easy scanning and selecting items in a list.

• Effective categorical organization of products.

• Simple navigation from home page to information and order links for specific

products.

• Obvious shopping links or buttons.

• Minimal and effective security notifications or messages.

• Consistent layout of product information.

Another important factor in the design of an e-commerce site is feedback [4]. The

interactive cycle between a user and a web site is not complete until the web site responds

to a command entered by the user. According to Norman [5], "feedback--sending back to

the user information about what action has actually been done, what result has been

accomplished--is a well known concept in the science of control and information theory.

Imagine trying to talk to someone when you cannot even hear your own voice, or trying

to draw a picture with a pencil that leaves no mark: there would be no feedback".

3

Web site feedback often consists of a change in the visual or verbal information

presented to the user. Simple examples include highlighting a selection made by the user

or filling a field on a form based on a user's selection from a pull down list. Another

example is using the sound of a cash register to confirm that a product has been added to

an electronic shopping cart.

Completed orders should be acknowledged quickly. This may be done with an

acknowledgment or fulfillment page. The amount of time it takes to generate and

download this page, however, is a source of irritation for many e-commerce users. Users

are quick to attribute meaning to events. A blank page, or what a user perceives to be "a

long time" to receive an acknowledgment, may be interpreted as "there must be

something wrong with the order." If generating an acknowledgment may take longer than

what may be reasonably expected by the user, then the design should include

intermediate feedback to the user indicating the progress being made toward

acknowledgment or fulfillment.

Finally, feedback should not distract the user. Actions and reactions made by the

web site should be meaningful. Feedback should not draw the user's attention away from

the important tasks of gathering information, selecting products, and placing orders.

3. Project Design

In order to design a web site, the relational database must be designed first.

Conceptual design can be divided into two parts: The data model and the process

model. The data model focuses on what data should be stored in the database while the

process model deals with how the data is processed. To put this in the context of the

relational database, the data model is used to design the relational tables. The process

model is used to design the queries that will access and perform operations on those

tables.

4

3.1 Data Model

A data model is a conceptual representation of the data structures that are required

by a database. The first step in designing a database is to develop an Entity-Relation

Diagram (ERD). The ERD serves as a blue print from which a relational database maybe

deduced. Figure 1 shows the ERD for the project and later we will show the

transformation from ERD to the Relational model.

Figure 1 Entity Relationship Diagram (ERD)

In the ERD, a rectangle is used to represent a table and a diamond to represent the

relationship between the entities. The cardinality is the frequency of a relationship

between two entities. The types of cardinality are one to one (1:1), one to many (1:M),

zero to many (0:M) and many to many (M:M). One to one means that every record in

5

entity A matches exactly one record in entity B and every record in B matches exactly

one record in A. One to many means that every record in A matches zero or more records

in B and every record in B matches exactly one record in A. If there is a one to many

relationship between two entities, then these entities are represented as Associative

Entities. In the Relational Database model, each of the entities will be transformed into a

table. The tables are shown below along with the attributes.

6

3.1.1 Database Design

 In this section, the basic structure of the tables composing the database for the

project are shown along with information about primary and foreign keys.

Customer

SNO NAME TYPE DESCRIPTION

1 UserID Varchar Primary key for Customer identification

2 Password Varchar Security for Customer

3 First_Name Varchar

4 Last_Name Varchar

5 Address Varchar

6 City Varchar

7 Zip Integer

8 State Varchar

9 Email Address Varchar

10 Phone_Number Varchar

Books

SNO NAME TYPE DESCRIPTION

1 InventoryID Integer Primary key for Inventory Identification,
ISBN of a book

2 Book_Name Varchar

3 Author Varchar

5 Nr_books Integer

6 Price Double

7

State_Tax

SNO NAME TYPE DESCRIPTION

1 State Name Varchar Primary key for State Identification

2 Sales Tax Rate Double Sales tax for each state

Shopping_Cart_Items

SNO NAME TYPE DESCRIPTION

1 ShoppingCartID Integer Primary key for Shopping Cart

Identification

2 InventoryID Varchar Foreign key to Inventory

3 Price Double

4 Date Date

5 UserID Varchar Foreign key to Customer

6 Quantity Integer

Order_Details

SNO NAME TYPE DESCRIPTION

1 OrderID Integer Primary key for Order identification

1 UserID Char Foreign key to Customer

2 Receiver’s Name Char If order is to be sent to other address rather
than to the customer, we need that address

3 Address Char

4 City Char

5 Zip Integer

6 State Char Foreign key to State Tax

7 Type of Shipping Char Foreign key to Shipping Type

8 Date of Purchase Date

8

Shipping_Type

SNO NAME TYPE DESCRIPTION

1 Type of Shipping Varchar Primary key to define type of shipping

2 Price Double

3 Approximate days
for delivery

Integer

Credit_Card_Details

SNO NAME TYPE DESCRIPTION

1 Credit Username Varchar Primary key for Customer Identification

2 Credit Card
Number

Varchar

3 Card Type Varchar Master Card, Visa, Discover

4 CVV Number Integer Number present on the back of the card for
extra security

5 Expiry Date Date

6 UserID Varchar Foreign key to Customer

Book_Review

SNO NAME TYPE DESCRIPTION

1 InventoryID Varchar ISBN of the book on which the review is
written

2 Reviews Varchar Review on the book

3 Rating Varchar Rating given to the book in a scale of 5

4 Review Date Date

5 User Name Varchar Name of the user providing the review

9

Purchase_History

SNO NAME TYPE DESCRIPTION

1 UserID Varchar Primary key for Customer Identification

2 InventoryID Varchar Book purchased by the user

3 Date of Purchase Date

4 OrderID Integer Foreign key to Order_details

5 Quantity Integer

6 Price Double

10

3.2. Process Model

A Process Model tells us about how the data is processed and how the data flows

from one table to another to gather the required information. This model consists of the

Functional Decomposition Diagram and Data Flow Diagram.

3.2.1. Functional Decomposition Diagram

A decomposition diagram shows a top-down functional decomposition of a

system and exposes the system's structure. The objective of the Functional

Decomposition is to break down a system step by step, beginning with the main function

of a system and continuing with the interim levels down to the level of elementary

functions. The diagram is the starting point for more detailed process diagrams, such as

data flow diagrams (DFD). Figure 2 shows the Functional Decomposition Diagram for

this project.

11

Figure 2 Functional Decomposition Diagram

12

3.2.2 Data Flow Diagram (DFD)

 Data Flow Diagrams show the flow of data from external entities into the system,

and from one process to another within the system. There are four symbols for drawing a

DFD:

1. Rectangles representing external entities, which are sources or destinations of

data.

2. Ellipses representing processes, which take data as input, validate and process it

and output it.

3. Arrows representing the data flows, which can either, be electronic data or

physical items.

4. Open-ended rectangles or a Disk symbol representing data stores, including

electronic stores such as databases or XML files and physical stores such as filing

cabinets or stacks of paper.

Figures 3 - 14 are the Data Flow Diagrams for the current system. Each process within

the system is first shown as a Context Level DFD and later as a Detailed DFD. The

Context Level DFD provides a conceptual view of the process and its surrounding input,

output and data stores. The Detailed DFD provides a more detailed and comprehensive

view of the interaction among the sub-processes within the system.

13

Customer-Browse Context DFD

Figure 3 Customer - Browse Context DFD

Customer-Browse Detailed DFD

Figure 4 Customer - Browse Detailed DFD

14

Customer - ShoppingCart Context DFD

Figure 5 Customer – Shopping Cart Context DFD

Customer - ShoppingCart Detailed DFD

Figure 6 Customer - Shopping Cart Detailed DFD

15

Customer-Authentication Context DFD

Figure 7 Customer - Shopping Cart Detailed DFD

Customer-Authentication-PurchaseHistory DFD

Figure 8 Customer - Shopping Cart Detailed DFD

16

Customer-Authentication-UserProfile DFD

Figure 9 Customer – Authentication – UserProfile DFD

Authenticated User-Purchase Context DFD

Figure 10 Authenticated User-Purchase Context DFD

17

Authenticated User-Purchase DFD

Figure 11 Customer - Authentication - Purchase DFD

18

Customer-NewUserRegistration DFD

Figure 12 Customer - NewUserRegistration DFD

Administrator Context DFD

Figure 13 Administrator Context DFD

Administrator Detailed DFD

Figure 14 Administrator Detailed DFD

19

3.3 User Interface Design

 Before implementing the actual design of the project, a few user interface designs

were constructed to visualize the user interaction with the system as they browse for

books, create a shopping cart and purchase books. The user interface design will closely

follow our Functional Decomposition Diagram (Figure 2). Figures 15 – 20 show the

initial designs of the web pages.

Figure 15 Menu

Figure 16 Display of Books present in the store

20

Figure 17 For searching the books in the store

Figure 18 Shopping Cart for the user

21

Figure 19 Registration of the new user

22

Figure 20 Authentication of the user

23

4. Implementation Technologies

 The objective of this project is to develop an online book store. When the user

types in the URL of the Book Store in the address field of the browser, a Web Server is

contacted to get the requested information. In the .NET Framework, IIS (Internet

Information Service) acts as the Web Server. The sole task of a Web Server is to accept

incoming HTTP requests and to return the requested resource in an HTTP response. The

first thing IIS does when a request comes in is to decide how to handle the request. Its

decision is based upon the requested file's extension. For example, if the requested file

has the .asp extension, IIS will route the request to be handled by asp.dll. If it has the

extens ion of .aspx, .ascx, etc, it will route the request to be handled by ASP.NET Engine.

Figure 21 Relation between IIS and ASP.NET

 The ASP.NET Engine then gets the requested file, and if necessary contacts the

database through ADO.NET for the required file and then the information is sent back to

the Client’s browser. Figure 21 shows how a client browser interacts with the Web server

and how the Web server handles the request from client.

24

4.1. Internet Information Services (IIS)

 IIS is a set of Internet based services for Windows machines. Originally supplied

as part of the Option Pack for Windows NT, they were subsequently integrated with

Windows 2000 and Windows Server 2003). The current (Windows 2003) version is IIS

6.0 and includes servers for FTP (a software standard for transferring computer files

between machines with widely different operating systems), SMTP (Simple Mail

Transfer Protocol, is the de facto standard for email transmission across the Internet) and

HTTP/HTTPS (is the secure version of HTTP, the communication protocol of the World

Wide Web) [12].

Features: The web server itself cannot directly perform server side processing

but can delegate the task to ISAPI (Application Programming Interface of IIS)

applications on the server. Microsoft provides a number of these including ones for

Active Server Page and ASP.NET.

Compatibility: Internet Information Services is designed to run on Windows

server operating systems. A restricted version that supports one web site and a limited

number of connections is also supplied with Windows XP Professional.

Microsoft has also changed the server account that IIS runs on. In versions of IIS

before 6.0, all the features were run on the System account, allowing exploits to run wild

on the system. Under 6.0 many of the processes have been brought under a Network

Services account that has fewer privileges. In particular this means that if there were an

exploit on that feature, it would not necessarily compromise the entire system.

25

4.2 ASP.NET

ASP.NET is a programming framework built on the common language runtime

that can be used on a server to build powerful Web applications. ASP.NET has many

advantages – both for programmers and for the end users because it is compatible with

the .NET Framework. This compatibility allows the users to use the following features

through ASP.NET:

a) Powerful database-driven functionality: ASP.NET allows programmers to

develop web applications that interface with a database. The advantage of

ASP.NET is that it is object-oriented and has many programming tools that

allow for faster development and more functionality.

b) Faster web applications: Two aspects of ASP.NET make it fast -- compiled

code and caching. In ASP.NET the code is compiled into "machine language"

before a visitor ever comes to the website. Caching is the storage of

information in memory for faster access in the future. ASP.NET allows

programmers to set up pages or areas of pages that are commonly reused to be

cached for a set period of time to improve the performance of web

applications. In addition, ASP.NET allows the caching of data from a database

so the website is not slowed down by frequent visits to a database when the

data does not change very often.

c) Memory leak and crash protection: ASP.NET automatically recovers from

memory leaks and errors to make sure that the website is always available to

the visitors.

ASP.NET also supports code written in more than 25 .NET languages

(including VB.NET, C#, and Jscript.Net). This is achieved by the Common Language

Runtime (CLR) compiler that supports multiple languages.

26

4.2.1. Authentication in ASP.NET

There are two separate authentication layers in an ASP.NET application. All

requests flow through IIS before they are handed to ASP.NET, and IIS can decide to

deny access before ASP.NET even knows about the request. Here is how the process

works [14]:

1. IIS checks to see if an incoming request is coming from an IP address that is allowed

access to the domain. If not, the request is denied.

2. IIS performs its own user authentication, if it is configured to do so. By default, IIS

allows anonymous access and requests are authenticated automatically.

3. When a request is passed from IIS to ASP.NET with an authenticated user, ASP.NET

checks to see whether impersonation is enabled. If so, ASP.NET acts as though it were

the authenticated user. If not, ASP.NET acts with its own configured account.

4. Finally, the identity is used to request resources from the operating system. If all the

necessary resources can be obtained, the user's request is granted; otherwise the request is

denied.

27

4.3. MySQL Database

 In this project, MySQL is used as the backend database. MySQL is an open-

source database management system. The features of MySQL are given below:

• MySQL is a relational database management system. A relational database stores

information in different tables, rather than in one giant table. These tables can be

referenced to each other, to access and maintain data easily.

• MySQL is open source database system. The database software can be used and

modify by anyone according to their needs.

• It is fast, reliable and easy to use. To improve the performance, MySQL is multi-

threaded database engine. A multithreaded application performs many tasks at

the same time as if multiple instances of that application were running

simultaneously.

In being multithreaded MySQL has many advantages. A separate thread handles

each incoming connection with an extra thread that is always running to manage the

connections. Multiple clients can perform read operations simultaneously, but while

writing, only hold up another client that needs access to the data being updated. Even

though the threads share the same process space, they execute individually and because

of this separation, multiprocessor machines can spread the thread across many CPUs as

long as the host operating system supports multiple CPUs. Multithreading is the key

feature to support MySQL’s performance design goals. It is the core feature around

which MySQL is built.

MySQL database is connected to ASP.NET using an ODBC driver. Open

Database Connectivity (ODBC) is a widely accepted application-programming interface

(API) for database access. The ODBC driver is a library that implements the functions

supported by ODBC API. It processes ODBC function calls, submits SQL requests to

MySQL server, and returns results back to the application. If necessary, the driver

modifies an application's request so that the request conforms to syntax supported by

MySQL.

28

4.4. Integrating IIS and ASP.NET

 When a request comes into IIS Web server its extension is examined and, based

on this extension, the request is either handled directly by IIS or routed to an ISAPI

extension. An ISAPI extension is a compiled class that is installed on the Web server and

whose responsibility is to return the markup for the requested file type. By default, IIS

handles the request, and simply returns the contents of the requested file [13].

This makes sense for static files, like images, HTML pages, CSS files, external

JavaScript files, and so on. For example, when a request is made for a .html file, IIS

simply returns the contents of the requested HTML file.

For files whose content is dynamically generated, the ISAPI extension configured

for the file extension is responsible for generating the content for the requested file. For

example, a Web site that serves up classic ASP pages has the .asp extension mapped to

the asp.dll ISAPI extension. The asp.dll ISAPI extension executes the requested ASP

page and returns its generated HTML markup. If the Web site serves up ASP.NET Web

pages, IIS has mapped the .aspx to aspnet_isapi.dll, an ISAPI extension that starts off the

process of generating the rendered HTML for the requested ASP.NET Web page.

The aspnet_isapi.dll ISAPI extension is a piece of unmanaged code. That is, it is

not code that runs in the .NET Framework. When IIS routes the request to the

aspnet_isapi.dll ISAPI extension, the ISAPI extension routes the request onto the

ASP.NET engine, which is written in managed code - managed code is code that runs in

the .NET Framework.

The ASP.NET engine is strikingly similar to IIS in many ways. Just like IIS has a

directory mapping file extensions to ISAPI extensions, the ASP.NET engine maps file

extensions to HTTP handlers. An HTTP handler is a piece of managed code that is

responsible for generating the markup for a particular file type.

29

4.5. Integrating the Website and Database

 Customers ordering from an e-commerce website need to be able to get

information about a vendor’s products and services, ask questions, select items they wish

to purchase, and submit payment information. Vendors need to be able to track customer

inquiries and preferences and process their orders. So a well organized database is

essential for the development and maintenance of an e-commerce site [3].

 In a static Web page, content is determined at the time when the page is created.

As users access a static page, the page always displays the same information. Example of

a static Web page is the page displaying company information. In a dynamic Web page,

content varies based on user input and data received from external sources. We use the

term “data-based Web pages” to refer to dynamic Web pages deriving some or all of their

content from data files or databases.

 A data-based Web page is requested when a user clicks a hyperlink or the submit

button on a Web page form. If the request comes from clicking a hyperlink, the link

specifies either a Web server program or a Web page that calls a Web server program. In

some cases, the program performs a static query, such as “Display all items from the

Inventory”. Although this query requires no user input, the results vary depending on

when the query is made. If the request is generated when the user clicks a form’s submit

button, instead of a hyperlink, the Web server program typically uses the form inputs to

create a query. For example, the user might select five books to be purchased and then

submit the input to the Web server program. The Web server program then services the

order, generating a dynamic Web page response to confirm the transaction. In either case,

the Web server is responsible for formatting the query results by adding HTML tags. The

Web server program then sends the program’s output back to the client’s browser as a

Web page.

30

5. Web Page Programming Options

 An e-commerce organization can create data-based Web pages by using server-

side and client-side processing technologies or a hybrid of the two. With server-side

processing, the Web server receives the dynamic Web page request, performs all

processing necessary to create the page, and then sends it to the client for display in the

client’s browser. Client-side processing is done on the client workstation by having the

client browser execute a program that interacts directly with the database.

Figure 22 Web page programming options

31

Figure 22 (reproduced from [3]) outlines commonly used server-side, client-side,

and hybrid Web and data processing technologies; client-side scripts are in dashed lines

to indicate they are unable to interact directly with a database or file but are used to

validate user input on the client, then send the validated inputs to the server for further

processing.

5.1. Server-side processing.

Generally dynamic or data-driven Web pages use HTML forms to collect user

inputs, submitting them to a Web server. A program running on the server processes the

form inputs, dynamically composing a Web page reply. This program, which is called,

servicing program, can be either a compiled executable program or a script interpreted

into machine language each time it is run.

Compiled server programs. When a user submits HTML-form data for processing by a

compiled server program, the Web Server invokes the servicing program. The servicing

program is not part of the Web server but it is an independent executable program

running on the Web server; it processes the user input, determines the action which must

be taken, interacts with any external sources (Eg: database) and finally produces an

HTML document and terminates. The Web server then sends the HTML document back

to the user’s browser where it is displayed. Figure 23 shows the flow of HTTP request

from the client to the Web server, which is sent to the servicing program. The program

creates an HTML document to be sent to the client browser.

Figure 23 Compiled server programs flowchart

32

Popular languages for creating compiled server programs are Java, Visual Basic, and

C++, but almost any language that can create executable programs can be used, provided

that it supports commands used by one of the protocols that establish guidelines for

communication between Web servers and servicing programs. The first such protocol,

introduced in 1993, for use with HTML forms was the Common Gateway Interface

(CGI); many servicing programs on Web sites still use CGI programs. However, a

disadvantage of using CGI-based servicing programs is that each form submitted to a

Web server starts its own copy of the servicing program on the Web server.

 A busy Web server is likely to run out of memory when it services many forms

simultaneously; thus, as interactive Web sites have gained popularity, Web server

vendors have developed new technologies to process form inputs without starting a new

copy of the servicing program for each browser input. Examples of these technologies for

communicating with Web servers include Java Servlets [8] and Microsoft’s ASP.NET

[7]; they allow a single copy of the servicing program to service multiple users without

starting multiple instances of the program.

 ASP.NET has introduced many new capabilities to server-side Web

programming, including a new category of elements called server controls that generate

as many as 200 HTML tags and one or more JavaScript [9] functions from a single server

control tag. Server controls support the processing of user events, such as clicking a

mouse or entering text at either the client browser or the Web server. Server controls also

encourage the separation of programming code into different files and/or areas from the

HTML tags and text of a Web page, thus allowing HTML designers and programmers to

work together more effectively.

Server-side scripts. Web-based applications can also use server-side scripts to create

dynamic Web pages that are able to retrieve and display information from a backend

database and modify data records. The processing architecture is the same as the

processing architecture used for compiled server programs (Figure 21), except the Web

33

server processing is performed through and interpreted script rather than a compiled

program.

 If needed, a developer can have a single Web server process a variety of scripts

written with any or all of these technologies. The Web server knows which script

interpreter to invoke by taking note of the requesting script’s file extension. Table 1

below demonstrates some commonly used extensions and the related technologies.

Table 1Processing Technology for different File Extensions

File Extension Processing technology interpreter/compiler

.asp Microsoft Active Server Page

.aspx Microsoft ASP.NET web page

.js Microsoft Scripting Language “JScript” file extension

.php PHP Script

.vbp Visual Basic Project

Programs created through ASP.NET are not backward compatible with ASP

scripts created through the original ASP server-side scripting technology [10]; upgrading

older ASP scripts to ASP.NET requires substantial revision. ASP and ASP.NET

programs can, however, run on the same Web server, as ASP.NET programs are

distinguished with .aspx file extensions.

Server-side hybrid processing. Compiled server-side programs offer two main

advantages: First, they are compiled and stored in a machine-readable format; so they

usually run faster than scripts. Second, compiled programs are usually created in

integrated development environments that provide debugging utilities. The advantage of

using scripts is that their modification requires only a text editor rather than installation of

an associated development environment.

34

Hybrid server-side programming strives to combine the advantages of compiled

server-side programs and server-side scripts; a server-side script is created but not

compiled. The first time a user accesses a Web page calling the script, the script is

compiled into machine-readable format and stored as an executable file. With this

approach, the developer works with ordinary text files and does not need to install an

integrated programming development environment to modify the script. Performance is

improved because the program does not need to be translated into machine language each

time it runs.

 In 1997, Sun Microsystems introduced Java Server Page (JSP) technology. Unlike

ASP scripts, JSP source code is automatically compiled into machine-readable format the

first time a user accesses it. The Web server saves the compiled JSP program, using it

(rather than the source code) the next time anyone else tries to access this particular JSP.

This scheme reduces both the processing performed and the time the user has to wait to

view a response from the Web server. If a programmer modifies the JSP source code, the

Web server notes that the source code file has been modified since the compiled version

was created, compiling and saving the compiled program the next time a user access the

page. In 2002, Microsoft introduced ASP.NET which is very similar to JSP with the

additional flexibility that many different source languages such as VB, C#, J# can be used

to implement web based applications.

 Both ASP.NET and JSP are considered as Hybrid server side technologies.

ASP.NET is designed to work under the Windows/Server and IIS web server

environment. JSP is more portable as it works in most Operating Environments including

Windows and Linux.

Choosing server-side processing. From a performance standpoint, because compiled

programs execute faster than scripts, busy Web servers should use compiled server-side

programs. From a deve lopment standpoint, scripts are easier to create, modify and install

without having to stop the operation of the web application.

35

5.2. Client-Side Processing.

Client-side Web page processing is achievable through compiled programs

downloaded, installed, and executed on the client workstation or by creating scripts with

the HTML Web page commands interpreted by the client browser.

Downloading and running compiled programs on client workstations. When a user clicks

a hyperlink on a Web page associated with a compiled client-side program, the user’s

browser must have the ability to run the executable program file; this program interacts

with the user, sending and retrieving data from a database server as needed.

Many times, the user is asked to install certain ActiveX components to view some

animations or play games. This new component plugs in into the existing system, thus

extending the functionality of the system.

Java Applets are another example of compiled programs on client workstations.

An applet is a program written in the Java programming language that can be included in

an HTML page, much in the same way an image is included in a page. When we use a

Java technology-enabled browser to view a page that contains an applet, the applet's code

is transferred to our system and executed by the browser

Client-side scripts. In a client-side script, source code written in such languages as

JavaScript and VBScript is embedded in an HTML document, along with the static

HTML text; it is placed within delimiter tags to indicate to the user’s browser that the text

is code that must be interpreted. If the user’s browser is able to recognize and interpret

the code, it is processed. If the browser is unable to recognize and interpret the code, it is

displayed as text on the Web page.

 Although basic client-side scripts cannot be used by a Web page to interact with a

remote database, they are often used to validate user inputs entered on HTML forms

submitted for processing by a server-side program; for example, a script running on a

36

client workstation might check the inputs users submit to a Web page to make sure they

entered all required data and appropriate data values. This approach avoids transmitting

inputs to the Web server that are incomplete or include errors, while offloading error

checking and handling from the Web server program to the client workstation.

 Client-side scripts can also be used to create advanced Web page features,

including: animations, calculations, playing sound and video, and image maps allowing

users to move their cursors over an image and click to access different Web page links.

 JavaScript is the most commonly used client-side scripting language and is

supported by most browsers.

 Use of a client-side scripting language depends on the user’s operating system,

browser platforms, and developer expertise. If the Web pages in question are to be

accessed by a variety of users over the Internet, JavaScript is probably better than

VBScript, as JavaScript is the only scripting language able to run on nearly all browsers.

If the Web pages are to be accessed on an intranet and if the organization has

standardized on Microsoft’s browser and Web server, VBScript is a satisfactory scripting

language for creating client-side scripts.

6. Web Based Application Development

The Web is built on the HyperText Transfer Protocol. HTTP is a client/server

request/reply protocol that is stateless. That is, the protocol does not make any

association between one transaction and another; e.g.: time since the la st transaction, type

or client involved in the last transaction, what data was exchanged between the client and

the server. As far as HTTP is concerned, each transaction is a discrete event. But this is

not what we want in a shopping cart application because we need to preserve the user’s

shopping selection as they proceed with their purchase, in addition it is useful to have the

access to their past purchase history and personal preferences.

37

Carrying information from one page to another can be achieved by several ways,

such as Cookies, Session variables, Post variables, etc.

A cookie is a small file that has a maximum age, a domain and path of

applicability, and a security specification. Any time a server sends a response to a client,

it may include one or more Set-Cookie headers. When a client receives a Set-cookie

header, it stores the content of the header and the cookie, for later use. In our application,

every time the client selects an item to put in the shopping cart, the server can send a Set-

Cookie whose content is the ID of the item, and whose domain and path of applicability

are the URL of the order/payment page. Then, when the user goes to order and pay, the

client will send the Cookie headers for each of the selected items. Upon receiving this

request, the server can parse the supplied cookies and charge the user appropriately for

the selected items. Cookies may also be used to identify the users.

However, cookies are very insecure to use since they are transmitted as plain text

and the server has no control over how cookies are stored in at the client’s side. Another

approach is based on a notion of session ID. These notions provide means for the server

to track the requests of a client through a “session”, but unlike cookies, which are stored

on the client, Session variables are stored on the Server. A session starts when a user logs

in and ends when they log off from the website.

The Session object is used to store information about, or change settings for a user

session. Variables stored in the Session object hold information about one single user,

and are available to all pages in one application. Common information stored in session

variables are name, id, and preferences. The server creates a new Session object for each

new user, and destroys the Session object when the session expires.

In this project, the concept of session variables will be used for maintaining state

information.

38

7. Database Connectivity

 In e-commerce applications it is very typical for the Web server to contact the

database to get information as needed. ASP.NET uses a technology called ActiveX Data

Objects.NET (ADO.NET) to connect to the database.

7.1 ADO.NET

 Classic ASP pages used ActiveX Data Objects (ADO) to access and modify

databases. ADO is a programming interface used to access data. This method was

efficient and fairly easy for developers to learn and implement. However, ADO suffered

from a dated model for data access with many limitations, such as the inability to transmit

data so it is easily and universally accessible. Coupled with the move from standard SQL

databases to more distributed types of data (such as XML), Microsoft introduced

ADO.NET.

 Although ADO.NET is known as the next evolution of ADO, it is very different

from its predecessor. Whereas ADO was connection-based, ADO.NET relies on short,

XML message-based interactions with data sources. This makes ADO.NET much more

efficient for Internet-based applications.

 A fundamental change from ADO to ADO.NET was the adoption of XML for

data exchanges. XML is a text-based markup language, similar to HTML that presents an

efficient way to represent data. This allows ADO.NET to reach and exchange. It also

gives ADO.NET much better performance because XML data is easily converted to and

from any type of data.

 Another major change is the way ADO.NET interacts with databases. ADO

requires “locking” of database resources and lengthy connections for its applications, but

ADO.NET does not; it uses disconnected data sets, which eliminates lengthy connections

39

and database locks. This makes ADO.NET much more scalable because users are not in

contention for database resources.

 In ADO.NET there are two core objects that allow us to work with data initially:

the DataReader and the DataSet. In any .NET data access page, before we connect to a

database, we first have to import all the necessary namespaces that will allow us to work

with the objects required. Namespace in .NET is a set of classes that can be used while

creating an application. The .NET Framework has about 3,500 classes which can be

accessed through a namespace. The application will be using a technology known as

Open DataBase Connectivity (ODBC) to access the database; therefore we must first

import necessary namespaces. Below is a sample namespace declaration used by .NET.

<%@ Import Namespace="System" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.Odbc" %>

After all the necessary namespaces are imported, a connection to the database is

made.
OdbcConnetion odbcCon = new OdbcConnection ("DRIVER = {MySQL ODBC 3.51

Driver}; SERVER=localhost; DATABASE=project;

UID=root; PASSWORD=pwd");

odbcCon.Open();

 The above statement creates a connection to the database with an

OdbcConnection object. This object tells ASP.NET where to go to get the data it needs.

Since the data is stored in the same computer as the application, the SERVER is given as

localhost. Next we open the connection object. Listed below are the common connection

object methods we could work with:

40

• Open - Opens the connection to our database

• Close - Closes the database connection

• Dispose - Releases the resources on the connection object. Used to force garbage

collecting, ensuring no resources are being held after our connection is used.

• State - Tells you what type of connection state your object is in, often used to

check whether the connection is still using any resources.

Once the connection is made, in order to access the data in a database, ADO.NET

relies on two components: DataSet and Data Provider [20]. These components are

explained below.

DataSet

The dataset is a disconnected, in-memory representation of data. It can be

considered as a local copy of the relevant portions of the database. The DataSet resides in

memory and the data in it can be manipulated and updated independent of the database. If

necessary, changes made to the dataset can be applied to the central database. The data in

DataSet can be loaded from any valid data source such as a text file, an XML database,

Microsoft SQL server database, an Oracle database or MySQL database.

Data Provider

The Data Provider is responsible for providing and maintaining the connection to

the database. A DataProvider is a set of related components that work together to provide

data in an efficient and performance driven manner. Each DataProvider consists of the

following component classes:

• The Connection object which provides a connection to the database

• The Command object which is used to execute a command

• The DataReader object which provides a read only, connected recordset

• The DataAdapter object which populates a disconnected DataSet with data

and performs the update.

41

The Connection Object

The Connection object creates the connection to the database. Microsoft Visual

Studio .NET provides two types of Connection classes: the SqlConnection object, which

is designed specifically to connect to Microsoft SQL Server 7.0 or later, and the

OleDbConnection object, which can provide connections to a wide range of database

types like Microsoft Access and Oracle. The Connection object contains all of the

information required to open a connection to the database.

The Command Object

The Command object is represented by two corresponding classes: SqlCommand

and OleDbCommand. Command objects are used to execute commands to a database

across a data connection. The Command objects can be used to execute stored procedures

on the database, SQL commands, or return complete tables directly. Command objects

provide three methods that are used to execute commands on the database:

ExecuteNonQuery: Executes commands that have no return values such as INSERT,

 UPDATE or DELETE.

ExecuteScalar: Returns a single value from a database query

ExecuteReader: Returns a result set by way of a DataReader object

The DataReader Object

The DataReader object provides a read-only, connected stream recordset from a

database. Unlike other components of the Data Provider, DataReader objects cannot be

directly instantiated. Rather, the DataReader is returned as the result of the Command

object's ExecuteReader method. The SqlCommand.ExecuteReader method returns a

SqlDataReader object, and the OleDbCommand.ExecuteReader method returns an

OleDbDataReader object. The DataReader can provide rows of data directly to

application logic when one does not need to keep the data cached in memory. Because

only one row is in memory at a time, the DataReader provides the lowest overhead in

42

terms of system performance but requires the exclusive use of an open Connection object

for the lifetime of the DataReader.

The DataAdapter Object

The DataAdapter is the class at the core of ADO .NET's disconnected data access.

It is essentially the middleman facilitating all communication between the database and a

DataSet. The DataAdapter is used either to fill a DataTable or DataSet with its Fill

method. After the memory-resident data has been manipulated, the DataAdapter can

commit the changes to the database by calling the Update method. The DataAdapter

provides four properties that represent database commands:

SelectCommand

InsertCommand

DeleteCommand

UpdateCommand

When the Update method is called, changes in the DataSet are copied back to the

database and the appropriate InsertCommand, DeleteCommand, or UpdateCommand is

executed.

43

ADO.NET follows the below process, Figure 24, to connect to the database and

retrieve data to the application [21].

Figure 24 ADO.NET Architecture

44

• When an ASP.NET application needs to access the database, it submits an

appropriate request to ADO.NET through a DataAdapter object, which in

turn sends a command to the Connection object.

• The Connection object establishes a connection to the database and

submits the request sent by DataAdapter.

• The Connection object connects to the database through a Provider such as

ODBC.NET. The Provider acts as a translator between the Connection

object and the database. It translates the request for data to database’s

language and brings back the data, if needed.

• The Provider sends the data back to the DataAdapter through the

Connection object and DataAdapter places the data in a DataSet object

residing in application’s memory.

Instead of storing data in a DataSet, a DataReader can be used to retrieve data

from the database. Results are returned in a resultset which is stored in the network buffer

on the client until a request is made to Read method of the DataReader. Using the

DataReader can increase the application performance by retrieving as soon as the data is

available, rather than waiting for the entire results of the query to be returned [22].

A DataSet can be used to interact with data dynamically such as binding to a Web

Form, cache locally in the application, provide hierarchical XML view of the data, etc. If

such functionalities are not required by the application, a DataReader can be used to

improve the performance of the application. By using a DataReader, the memory can be

saved that is used by the DataSet, as well as the processing required to Fill the contents of

a DataSet.

When a DataReader is used, a DataAdapter is not required to send the data to the

application. In this project, DataReader is used to read the data and Command object

called ExecuteNonQuery is used to write into the database.

45

7.2 Connecting ASP.NET application to a Database

 The steps required to connect our ASP.NET application to the MySQL database

and access the data are given below:

1. Import the required namespaces.
using System;

using System.Data;
using System.Data.Odbc;

2. Create a connection object.
string myConnectionString;

myConnectionString = “DRIVER = {MySQL ODBC 3.51 Driver}; SERVER =

 localhost; DATABASE = project; UID = root;

 PASSWORD = ‘’”

OdbcConnection odbcCon = new odbcConnection(myConnectionString)

3. Create a SQL query

 string str;
 str="Select * from Customer where UserID='admin’;

4. Create a Command object to run the SQL query
odbcCmd=new OdbcCommand(str,odbcCon);

5. DataReader to read the result

OdbcDataReader odbcReader;

String text, text2;

 while (odbcReader.Read())

 {

 text = odbcReader["UserID"].ToString();

 text2 = odbcReader[“FirstName”].ToString();

 }

6. Close odbcReader and odbcConnection
odbcReader.Close();

odbcCon.Close();

 The data can now be used as desired by the application.

46

8. The Shopping Cart Application

 The objective of this application is to provide the user an online website where

they can buy books from the comfort of their home. A shopping cart is used for the

purpose. The user can select the desired books, place them in the shopping cart and

purchase them using a Credit Card. The user’s order will be shipped according to the type

of shipping selected at the time of placing the order.

 Website consists of the following web pages:

1. AddBook.aspx

2. BookDetails.aspx

3. BookReview.aspx

4. Books.aspx

5. ChangePassword.aspx

6. CheckOut.aspx

7. FinalOrder.aspx

8. Footer.ascx

9. ForgotPassword.aspx

10. Login.aspx

11. LogOff.aspx

12. Menu.ascx

13. Order.aspx

14. PurchaseHistory.aspx

15. Registration.aspx

16. Search.aspx

17. ShoppingCart.aspx

18. UserDetails.aspx

Below figures show some screenshots taken from running the application. All the

functionalities are explained accordingly.

47

When the user types the web address in the browser, the main page of the

application is displayed which has the list of the top ten popular books available in the

store, as shown in Figure 25.

Figure 25 Book Details

The information about books is stored in “Books” table. The user can know the

ISBN of the book, book title, author of the book, number of copies available at the store,

price of the book. A link to add the book to the shopping cart and also a link to write a

review for the book are also provided. The user does not have to login to add a book to

the cart or to read/write a review.

48

8.1. Search for Books

Books can be searched based on the ISBN, Title or the Author of the book. When

searching for books by author “Jesse Liberty”, two books are displayed as shown in

Figure 26.

Figure 26 Search for books

49

8.2. Registration

 A new user can register on the site by clicking on the registration button on the

menu at the top of the page, as shown in Figure 27.

Figure 27 New user registration

The “*” beside the label indicates the required field for successful registration on

the site. If the value if not entered, an appropriate message is displayed. If a user with

same UserID already exists, the message is displayed. Clicking on Reset will clear all the

fields and Submit will submit the information for registration. Upon successful

completion, the user is directed to the Books page.

50

8.3. User Details

On clicking “User Details”, the detailed profile information of the user who is

currently logged in are displayed as shown in Figure 28.

Figure 28 User details

Here the users can change their profile except for the UserID and these details

will be reflected in the database only when the Update button is clicked. If the user has

placed any order previously, those details can be viewed by clicking on the Purchase

History button.

51

8.4. Shopping Cart

When “Add to Cart” is clicked for any book, it is added to the shopping cart

illustrated in Figure 29. If that particular book is already present in the shopping cart, the

quantity is increased by 1 and the price is changed accordingly; if not, a new entry is

made into the table. All the information in the shopping cart is stored in

“shopping_cart_items” table. Adding a book into the shopping cart does not decrease the

quantity of books in the Books table. It is decreased only after an order is placed for the

book. So, placing the book in the shopping cart does not guarantee the availability of the

book at the time of placing the order.

Figure 29 Shopping cart

52

8.5. Place an Order

When “Place an Order” button is clicked which is located on the bottom of the

shopping cart, the application will ask the user to login if he has not already done so.

Figure 30 Order Details

If the user is placing an order with the web site for the first time, they will be

asked to enter the credit card details as shown in the above figure; if not, only the Card

Verification Value (CVV) number of the credit card is asked for verification, as shown in

Figure 30.

53

At this point, the user can check the shipping address box if shipping address is

same as billing address, otherwise the user has to enter the new shipping address as

shown in Figure 31.

Figure 31Shipping details

If the check box provided is checked, the shipping address is obtained from the

Customer table. The user also has to select the desired type of shipping for the order.

When all the information is entered, the user can “Proceed to the Checkout”.

54

8.6. Check Out

Before placing the final order, the user is shown the total price of the order, which

includes total price of books selected, shipping rate and state tax as illustrated in Figure

32. If the user is not satisfied with the order, the order can be cancelled at that point. The

information in the shopping cart remains intact, so the user can go back to it and make

any changes if necessary. When the “Place Order” button is clicked, the order is placed

and the following screen appears which informs the user about the approximate number

of days in which the order will be delivered.

Figure 32 Check out

55

Once the order is placed, the quantity of the books is reduced in the Books table.

The shopping cart for the user cleared and an appropriate message is displayed, as shown

in Figure 33.

Figure 33 Order confirmation

The inventory is updated as shown in Figure 34 after the order is placed.

Figure 34 Updated inventory after order placement

56

8.7. Purchase History

Figure 35 details the purchase history of the user “skodali”. Purchase history can

be reached by clicking on the “Purchase History” tab on “User Details” screen as shown

in the Figure 28.

Figure 35 Purchase history

57

When viewing the purchase history, the user can view the details of each book by

clicking on the book name. The details are displayed as shown in Figure 36.

Figure 36 Book details

58

Book information can only be changed by the Administrator of the site. All other

users can only view the details of the books. The administrator of the site can also “Add

Book” or “Remove Book” to/from the Books table. Figure 37 allows a book modification

form accessible to the administrator.

Figure 37 Administrator - Modify books

In order to add a book, the administrator will enter the ISBN of the book. If the

ISBN is already present in the Books table, the administrator is asked to enter the

quantity of the books.

59

Figure 38 Details about new book

If the entered ISBN book is not present in the Inventory, the administrator is

asked to enter the details about the book as shown in Figure 38 to add the book to the

inventory.

60

Figure 39 shows the updated inventory after the book details in Figure 38 are

entered.

Figure 39 Updated Inventory

61

When a user logs off the website, the items in their Shopping Cart are cleared.

When the user enters a password during the registration, it is encrypted before it is

stored in the database. It is a one-way encryption and the original form cannot be

retrieved again. Similar encryption method is used for Credit Card Number.

Suppose there are only three “Programming C#” books available in the store. One

user adds all of them to the shopping cart, and by the time he chooses other books and

places the order, another user has already placed an order for two of those books. In that

case, the first user comes to know about this at the time of placing the order and he is

directed to the shopping cart to make the appropriate changes.

As explained earlier, the user need not be logged in to add books to the shopping

cart. When the user adds books without logging in, a GUID (Globally Unique Identifier)

is obtained from the system and stored in Session["loginid”] variable. This GUID is

stored in the shopping_cart_items table along with the selected books by the user. If the

user logs in, the GUID in the table is replaced with the actual UserID of the user.

Session variables are used to transfer data from one page to another. As soon as

the user closes the window, the session variables are cleared.

8.8. Transactions in the Application

A transaction is a group of database commands that are treated as a single unit.

Transaction must pass what is known as the ACID test:

Atomic: All operations in the transaction are executed properly or none. In other words,

they make up a single unit of work. For example, if a customer moves and a transaction is

used to reflect that change in the database, all parts of the address (street, city, state, etc)

must be changed as an atomic action, rather than changing street, then city, then state,

and so on.

62

Consistent : The execution of a single transaction preserves the consistency of the

database. All the relationships between data in a database are maintained correctly. For

example, if customer information uses a tax rate from a state tax table, the state entered

for the customer must exist in the state tax table.

Isolation: Each transaction is unaware of the other transactions occurring

concurrently. Changes made by other clients cannot affect the current changes. For

example, if two data entry operators try to make a change to the same customer at the

same time, one of two things occurs: either one operator's changes are accepted and the

other is notified that the changes were not made, or both operators are notified that their

changes were not made. In either case, the customer data is not left in an indeterminate

state.

Durability: Changes the transaction has performed persist in the database. Once a

change is made, it is permanent. If a system error or power failure occurs before a set of

commands is complete, those commands are undone and the data is restored to its

original state once the system begins running again.

Transaction processing is particularly important for Web applications that use

data access, since Web applications are distributed among many different clients. In a

Web application, databases are a shared resource, and having many different clients

distributed over a wide area can present these key problems:

• Contention for resources. Several clients might try to change the same record at

the same time. This problem gets worse the more clients you have.

• Unexpected failures. The Internet is not the most reliable network, even if your

Web application and Web server are 100 percent reliable. Clients can be

unexpectedly disconnected by their service providers, by their modems, or by

power failures.

• Web application life cycle. Web applications do not follow the same life cycle as

Windows applications—Web forms live for only an instant, and a client can leave

your application at any point by simply typing a new address in their browser.

63

Transaction processing follows these steps:

1. Begin a transaction.

2. Process database commands.

3. Check for errors.

4. If errors occurred, restore the database to its state at the beginning of the

transaction. If no errors occurred, commit the transaction to the database.

Suppose two users try to add the same book to the shopping cart and try to place

an order at the exact same time. An update should be done to the Books table after the

order is placed, but if only the latest transaction is noted down, the book quantity will

differ in the real world. This situation has to be handled as in a “Transaction”. As detailed

earlier, a transaction is an operation or set of operations that succeeds or fails as a logical

unit. That is, either both the updates are not done, or both the updates are done

consecutively.

Transactions are normally managed by declaring boundaries around a set of

operations. Operations that execute in the context of the transaction boundary then

succeed or fail as a unit. For ASP.NET, the transaction boundary is the execution of a

single request to a page, which might contain nested components that participate in the

same transaction. While the page is executing, if an operation on the page itself or a

nested component in the same transaction fails, it can call ContextUtil.SetAbort. This is

then picked up by the current transaction context, the entire transaction fails, and any

operations that were already completed are undone. If nothing fails, the transaction is

committed.

ASP.NET support for transactions consists of the ability to allow pages to

participate in ongoing Microsoft .NET Framework transactions. Transaction support is

exposed via an @Transaction directive that indicates the desired level of support:

<%@ Transaction="Required" %>

64

 Table 2 defines the supported transaction attributes. The absence of a transaction

directive is the same as an explicit directive to "Disabled".

Table 2 Transaction attributes

 Attribute Description

 Required The page requires a transaction. It runs in the context of an

existing transaction, if one exists. If not, it starts one.

 RequiresNew The page requires a transaction and a new transaction is

started for each request.

 Supported The page runs in the context of an existing transaction, if

one exists. If not, it runs without a transaction.

NotSupported

The page does not run within the scope of transactions.

When a request is processed, its object context is created

without a transaction, regardless of whether there is an

active transaction.

A transaction can be explicitly committed or aborted using static methods of the

System.EnterpriseServices.ContextUtil class. You can explicitly call the SetComplete

or SetAbort method to commit or abort an ongo ing transaction.

A transaction will commit or abort at the end of the page's lifetime depending on

whether SetComplete or SetAbort was called last, provided there is no other object to join

the same transaction.

65

9. Limitations and Future Development

 There are some limitations for the current system to which solutions can be

provided as a future development:

1. The system is not configured for multi-users at this time. The concept of

transaction can be used to achieve this.

2. The Website is not accessible to everyone. It can be deployed on a web

server so that everybody who is connected to the Internet can use it.

3. Credit Card validation is not done. Third party proprietary software can be

used for validation check.

 As for other future developments, the following can be done:

1. The Administrator of the web site can be given more functionalities, like

looking at a specific customer’s profile, the books that have to be

reordered, etc.

2. Multiple Shopping carts can be allowed.

10. Conclusion

The Internet has become a major resource in modern business, thus electronic

shopping has gained significance not only from the entrepreneur’s but also from the

customer’s point of view. For the entrepreneur, electronic shopping generates new

business opportunities and for the customer, it makes comparative shopping possible. As

per a survey, most consumers of online stores are impulsive and usually make a decision

to stay on a site within the first few seconds. “Website design is like a shop interior. If the

shop looks poor or like hundreds of other shops the customer is most likely to skip to the

other site”[16]. Hence we have designed the project to provide the user with easy

navigation, retrieval of data and necessary feedback as much as possible.

In this project, the user is provided with an e-commerce web site that can be used

to buy books online. To implement this as a web application we used ASP.NET as the

Technology. ASP.NET has several advantages such as enhanced performance,

66

scalability, built- in security and simplicity. To build any web application using ASP.NET

we need a programming language such as C#, VB.NET, J# and so on. C# was the

language used to build this application. For the client browser to connect to the ASP.NET

engine we used Microsoft’s Internet Information Services (IIS) as the Web Server.

ASP.NET uses ADO.NET to interact with the database as it provides in-memory caching

that eliminates the need to contact the database server frequently and it can easily deploy

and maintain an ASP.NET application. MySQL was used as back-end database since it is

one of the most popular open source databases, and it provides fast data access, easy

installation and simplicity.

A good shopping cart design must be accompanied with user-friendly shopping

cart application logic. It should be convenient for the customer to view the contents of

their cart and to be able to remove or add items to their cart. The shopping cart

application described in this project provides a number of features that are designed to

make the customer more comfortable.

This project helps in understanding the creation of an interactive web page and

the technologies used to implement it. The design of the project which includes Data

Model and Process Model illustrates how the database is built with different tables, how

the data is accessed and processed from the tables. The building of the project has given

me a precise knowledge about how ASP.NET is used to develop a website, how it

connects to the database to access the data and how the data and web pages are modified

to provide the user with a shopping cart application.

67

11. Bibliography

Articles

1. Chen, L. (2000). Enticing Online Consumers: A Technology Acceptance

Perspective Research- in-Progress. ACM Proceedings, SIGCPR.

2. Diwakar, H., Marathe, M. (2000). The architecture of a one-stop web-window

shop. December, ACM SIGecom Exchanges, Volume 2 Issue 1.

3. Morrison, M., Morrison, J., and Keys, A. (2002). Integrating Web Sites and

Databases. Communications of the ACM, September, Volume 45, Issue 9.

4. Kubilus, N. J. (2000). Designing an e-commerce site for users. September 2000,

Crossroads, Volume 7 Issue 1.

5. Norman, D.A. The Design of Everyday Things. Doubleday, New York, 1994.

6. Tilson, R., Dong, J., Martin, S., Kieke, E. (1998). A comparison of two current e-

commerce sites. September, Proceedings of the 16th annual international

conference on Computer documentation.

Books

7. Anderson, R., Francis, B., Homer, A., Howard, R., Sussman, D. and Watson.

(2001) Professional ASP.NET. Wrox Press Ltd.

8. Brown, S., Burdick, R., Falkner, J., Galbraith, B., Johnson, R., Kim, L., Kochmer,

C., Kristmundsson, T. and Li S (2001). Professional JSP. Wrox Press Ltd.

9. Walther, S. (1998) Active Server Pages. SAMS Net.

10. Wagner, R., Daniels, K., Griffin, G., Haddad, C. and Nasr, J. (1997) JavaScript

Unleashed. SAMS Net.

11. Wiley, Y. M. J. & Sons. (1997) Creating the Virtual Store: Taking Your Web Site

from Browsing to Buying.

68

Websites

12. http://encyclopedia.laborlawtalk.com/IIS for information on IIS

13. http://aspnet.4guysfromrolla.com/articles/020404-1.aspx for relationship between

IIS and ASP.NET.

14. http://216.15.201.66/dpec/course.htm?fullpg=http%3A//216.15.201.66/dpec/cours

es/wac312/wah006.htm&acro=wac312 for security authentication in ASP.NET

15. http://samples.gotdotnet.com/quickstart/aspplus/doc/mtstransactions.aspx for

information on Transactions in ASP.NET.

16. http://www.x-cart.com/articles/design_development.html for online customer

behavior.

17. http://aspnet.4guysfromrolla.com/articles/011404-1.aspx for relation between IIS

and ASP.NET.

18. http://www.informatik.uni-bremen.de/uniform/gdpa_d/methods/m-fctd.htm for

definition of Functional Decomposition.

19. http://www.agilemodeling.com/artifacts/dataFlowDiagram.htm for definition of

Data Flow Diagram.

20. http://www.startvbdotnet.com/ado/default.aspx for information on ADO.NET

21. http://mypage.iusb.edu/~hhakimza/505/index.html for ADO.NET objects.

22. http://msdn.microsoft.com for ADO.NET objects.

